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Abstract

EQUIVARIANT INTEGRATION AND LOCALIZATION

Connor Mooney, B.S.

George Mason University, 2022

Honors Thesis Director: Rebecca Goldin

This thesis endeavours to introduce the formalism of the Cartan model of equivariant

cohomology, with a focus towards its use in evaluating integrals via localization. It first

develops the traditional theory of de Rham cohomology and integration on smooth mani-

folds, before introducing the theory of equivariant differential forms, and finally stating the

Atiyah-Bott-Berline-Vergne localization formula and some of its corollaries.



Chapter 1: Introduction

Cohomological techniques have been unquestionably useful in the study of topological prop-

erties of manifolds. Given a cochain complex pX‚, d‚q, i.e., a collection of R-modules

tXku8
k“´8 and a collection of module homomorphisms dk : Xk Ñ Xk`1 such that dk`1 ˝

dk “ 0. Thus, we have the sequence:

¨ ¨ ¨ Xk Xk`1 Xk`2 ¨ ¨ ¨ ,dk´1 dk dk`1 dk`2

and we can construct the cohomology H‚pX‚, d‚q :“ kerpd‚q{impd‚´1q. Note that

Note that we often define d :
Àk

k“´8 Xk Ñ
Àk

k“´8 Xk by dx “ dkx for x P Xk.

One can construct a singular cohomology for a manifold M , where the cochains are duals

of smooth maps from simplices to M. The differential becomes the dual of the boundary

map, and thus we have a well-defined cohomology. It turns out though, that this is somewhat

more useful than homology; while the singular homology is a R-module, we can define the

cup product !: HkpMqˆH lpMq Ñ Hk`lpMq under which H‚pMq becomes a graded ring.

This extra algebraic structure makes cohomology notably easier to work with.

Thus, we have a graded ring topological invariant for every manifold. But how can we

account for additional structure on the manifold? For instance, what if there is a Lie group

G acting smoothly on M? The singular cohomology doesn’t account for the G-action in

any way.

This is where equivariant cohomology comes in. Just as singular (and de Rham) coho-

mology is a contravariant functor from the category of smooth manifolds to that of graded

rings, G-equivariant cohomology is a contravariant functor from the category of smooth

G-manifolds to that of graded rings.
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But the algebraic aspect of both standard and equivariant cohomology is not the main

focus of this thesis. Another remarkable boon of cohomology theory has been its connection

to differential geometry, specifically its connection to integration on manifolds. This thesis

was written firmly with the goal of expositing a remarkable group of related results called

“localization theorems,” which equate the integrals of equivariant cohomology classes to

their restrictions to the fixed-point submanifolds. This can remarkably simplify the cal-

culation of integrals, in some cases reducing them to just sums, in a way evocative of the

residue theorem.

None of this thesis is original content. Everything here has been done before in multiple

ways. What I hope to bring that is unique with this thesis, however, is the organization

and level of detail in the derivations provided. Hopefully this will be accessible to those

with some basic smooth manifold theory under his or her belt, and will be written in such

a way that even the non-trivial steps are given enough time to follow readily.

Further Reading

Due to the fairly focused nature of this thesis, there are many aspects of equivariant co-

homology theory that I give short shrift, or even fully ignore. Most notably, we ignore

completely the Weil and Borel models for equivariant cohomology in favor of the (in this

author’s opinion) more sleek and elegant Cartan model, in exchange for restricting our at-

tention to compact and connected Lie groups. For more resources on these two models,

I recommend the main reference resources for this thesis, [Tu20, GS99]. For other treat-

ments of equivariant cohomology, I refer the reader to [BGV92, Aud04]. For a physicist’s

perspective of the applications of this theory, I recommend [Ros21,Sza00].
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Chapter 2: de Rham Cohomology

The first task that lies ahead of us is to see how we can place standard, singular cohomology,

which we briefly described in the introduction, into a differential context. To do so, we

will construct a cochain complex out of differential forms, constructions used to formalize

integration on smooth manifolds.

In order to construct this cochain complex, we must first construct differential forms,

objects of independent mathematical interest. To put it concisely, differential forms are

alternating cotensor fields. But that clearly requires some unpacking. In this chapter, we

will begin by working with the algebra of alternating cotensors on an arbitrary vector space

V, before then defining differential forms and elucidating some of their properties. We then

show how differential forms are the natural objects one integrates on smooth manifolds,

and describe the differential-geometric generalization of Stokes’ theorem, before showing

how this factors into the construction of de Rham cohomology, which is in fact equivalent

to standard singular cohomology.

2.1 Alternating Cotensors and the Exterior Algebra

First, we must build the algebraic tools on vector spaces necessary to construct differential

forms on non-linear spaces (smooth manifolds).

Definition 2.1.1 (Alternating cotensors). Let V be an arbitrary n´dimensional vector

space over R. Then α : V k Ñ R is an alternating k´cotensor on V if and only if:

(a) α is k´linear (α is a tensor)

(b) α gives 0 whenever two arguments are equal (α is alternating).

3



The second condition is equivalent to stating that the cotensor evaluates to 0 whenever

the arguments are not all linearly independent. Thus, it becomes clear that there are no

nontrivial k´cotensors for k ą n.

Example 2.1.2. Let V “ R2, and f : R2 ˆ R2 Ñ R, defined by

fpu,vq “ u⊺Mv,

where

M “

¨

˚

˝

0 `λ

´λ 0

˛

‹

‚

for some λ P R. Then, f is an alternating 2´cotensor on V.

Definition 2.1.3. The set of all k´cotensors on V is denoted
Źk
pV ˚q.

Example 2.1.4.
Ź1
pV ˚q is just the dual vector space, V ˚, consisting of linear maps from

V Ñ R. Given a basis set tviuni“1 for V, the basis of V ˚ are the maps tωiuni“1 defined such

that ωipvjq “ δij .

Definition 2.1.5. The exterior algebra on V ˚, denoted
Ź

pV ˚q, is defined as

ľ

pV ˚q ”

n
à

j“0

ľj
pV ˚q,

where
Ź0
pV ˚q ” R.

By definition, the exterior algebra has a graded structure.

The last thing we need to make it a proper algebra is a product.

Definition 2.1.6 (Exterior “wedge” product). Let α P
Źj
pV ˚q and β P

Źk
pV ˚q. Then

pα^ βq : V j`k Ñ R

4



is defined by

pα^ βqpw1, ¨ ¨ ¨ , wj`kq “
pk ` jq!

k!j!

ÿ

σPSk`j

sgnpσq
´

α
`

wσp1q, wσp2q, ¨ ¨ ¨ , wσpkq

˘

¨ β
`

wσpk`1q, wσpk`2q, ¨ ¨ ¨ , wσpj`kq

˘

¯

.

First, we must show that this is a valid product, in that the wedge product of two

alternating cotensors is itself an alternating cotensor.

Theorem 2.1.7.

α^ β P
ľj`k

pV ˚q.

Proof. It is clear that α ^ β is pk ` lq-linear. Thus, we need only show that α ^ β is 0

whenever two arguments are equal.

To show this, note that for any permutation that sends the two equal arguments to a

and b, the permutation that sends them to b and a will cancel eachother out in the sum.

As every permutation has another permutation that just switches a and b, the whole right

hand side should cancel and go to 0.

Now, we will state a few theorems necessary to be able to algebraically manipulate these

objects.

Theorem 2.1.8. If α P
Źk
pV ˚q and β P

Źj
pV ˚q then

α^ β “ p´1qkjβ ^ α.

Corollary 2.1.8.1. If α P
Ź2k`1

pV ˚q for some k P N, then α^ α “ 0.

Note that this is not the case for even-degree alternating cotensors.

Theorem 2.1.9. The wedge product is associative and multilinear.
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Theorem 2.1.10. Let tωiuni“1 be the basis set for V ˚. Then, the basis for
Źk
pV ˚q is

tωi1 ^ ωi2 ^ ¨ ¨ ¨ ^ ωik |i1, ¨ ¨ ¨ ik P ZX r1, ns, i1 ‰ i2 ‰ ¨ ¨ ¨ ‰ iku.

Example 2.1.11. Let n “ 4 and α “ ω1 ^ ω3 ` ω2 ^ ω4. Then

α^ α “ pω1 ^ ω3 ` ω2 ^ ω4q ^ pω1 ^ ω3 ` ω2 ^ ω4q

“ pω1 ^ ω3q ^ pω1 ^ ω3q ` pω1 ^ ω3q ^ pω2 ^ ω4q

` pω2 ^ ω4q ^ pω1 ^ ω3q ` pω2 ^ ω4q ^ pω2 ^ ω4q

“ ω1 ^ pω3 ^ ω1q ^ ω3 ` ω1 ^ pω3 ^ ω2q ^ ω4

` pω2 ^ ω4 ^ ω1 ^ ω3q ` ω2 ^ pω4 ^ ω2q ^ ω4

“ ´ω1 ^ ω1 ^ ω3 ^ ω3 ´ ω1 ^ ω2 ^ ω3 ^ ω4

´ ω1 ^ ω2 ^ ω3 ^ ω4 ´ ω2 ^ ω2 ^ ω4 ^ ω4

“ ´2ω1 ^ ω2 ^ ω3 ^ ω4 ‰ 0.

2.2 Differential Forms

Now, we will take the techniques developed in the previous section, and extend them for use

on smooth manifolds, simply put, manifolds that in some differentiable way locally “look

like” Euclidean space. We will not define them beyond that here, but if one wishes to see

an in-depth treatment of them, we direct the reader to [Lee12].

Definition 2.2.1 (Tangent and cotangent bundle). Let TM ” \pPMTpM, and T ˚M ”

\pPMT
˚
pM. We call TM the tangent bundle, and T ˚M the cotangent bundle.

These two bundles are specific cases of what is called a vector bundle, which is a space

E along with a projector π : E ÑM such that E is locally difeomorphic to M ˆV for some
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vector space V – π´1ptpuq, called its fiber. We will not go into much more explanation of

vector bundles, but note the following two statements about them in more generality.

Theorem 2.2.2 (Exterior power of a vector bundle). Given a smooth vector bundle π :

E ÑM with fiber V, there exists a smooth vector bundle
Źk
pEq with fiber

Źk
pV q.

Proof. See [Tu17, 20.6-7] for proof.

Definition 2.2.3 (Smooth sections of a vector bundle). A smooth section of a vector bundle

E is a smooth map σ : M Ñ E such that π ˝ σ “ idM , i.e., πpσppqq “ p for all p PM. The

space of smooth sections of E is denoted ΓpM,Eq.

Note that unlike more general fiber bundles, there will always exist at least one global

section on a vector bundle, the zero section σ0 : p Ñ 0p, but not all vector bundles have a

nowhere-zero smooth section.

We call smooth sections on TM vector fields on M.

Definition 2.2.4 (Differential forms). A differential k-form ϖ on a smooth manifold M

is an element of ΩkpMq ” ΓpM,
Źk
pT ˚Mqq.

Note that as
Ź0
pT ˚Mq “ R, Ω0pMq “ C8pMq, and as differential forms inherit a

C8pMq-linear wedge product defined by wedging at each point, ΩpMq is both a graded

ring and a C8pMq-module. In other words, differential forms are the alternating subspace

of the dual space (as C8pMq modules) to the tensor algebra of vector fields.

Now we will begin to describe the space of differential forms in more concrete details.

Theorem 2.2.5 (The exterior derivative). There exists a unique linear map d : ΩkpMq Ñ

Ωk`1pMq satisfying the following prpperties;

(a) For a function (a 0-form) f :M Ñ R, df : T ˚M Ñ C8pMq is defined by

dfpXq “ Xpfq.

(b) dpdαq “ 0 for any form α.

7



(c) If α is a k-form, then dpα^ βq “ dα^ β ` p´1qkα^ dβ.

Proof. cf. [Lee12, Thm. 14.24]

Theorem 2.2.6. Given a neighborhood U ĎM with smooth coordinates txi :M Ñ Runi“1,

the 1´forms tdxiuni“1 form a smooth co-frame for T ˚M on U. In other words, given any

p P U, tdxipu
n
i“1 forms a basis of T ˚

pM.

Proof. cf. [Lee12, Ex. 11.13] and [Lee12, p. 281].

Theorem 2.2.7. Let M be a smooth n-manifold, and let pU,φ “ px1, x2, ¨ ¨ ¨ , xnqq be a

coordinate chart. For any f P C8pMq, in U,

df “
n
ÿ

i“1

Bf

Bxi
dxi.

Proof. To see this, note first that on dfpXq “ Xpfq. Next, recall that U,
␣

B
Bxi

(n

i“1
form

a frame for TM [Lee12, Ex. 8.10.a]. As tdxiuni“1 forms a coframe on U , we have that

df “
řn
i“1 gidx

i for some tgiu P C8pUq. Thus, as dxi
`

B
Bxj

˘

“ δij as a function (i.e., the

constant function pÑ δij), We have that

df

ˆ

B

Bxj

˙

“

n
ÿ

i“1

gidx
i

ˆ

B

Bxj

˙

“

n
ÿ

i“1

giδ
i
j “ gi.

However, we also know that df
`

B
Bxj

˘

“ B
Bxj
pfq “ Bf

Bxj
. Thus, we have proven our assertion.
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2.3 Integration and Stokes’ Theorem

Now we will begin to develop differential forms’ raison-d’être : coordinate-free integration

on manifolds. But first, some preliminaries.

Definition 2.3.1 (Pushforwards and pullbacks). Let F :M Ñ N be a smooth map between

two smooth manifolds. Then F˚ : TM Ñ TN is defined in the following way. Given v P TM,

for any point p P N and function g P C8pNq, F˚v satisfies

pF˚vqF ppqpgq “ vppg ˝ F q.

Next, we define F ˚ : T ˚N Ñ T ˚M to be the linear map that, given any p P M , ω P T ˚N,

and v P TM

pF ˚ωqppvpq “ ωF ppqppF˚vqF ppqq.

It is straightforward to show that pushforwards are covariant and pullbacks are con-

travariant, i.e., pF ˝ Gq˚ “ F˚ ˝ G˚ and pF ˝ Gq˚ “ G˚ ˝ F ˚. We can extend pullbacks to

F ˚ : ΛkpT ˚Nq Ñ ΛkpT ˚Mq by asserting that F ˚pα ^ βq “ pF ˚αq ^ pF ˚βq, and for when

f P Ω0pNq, F ˚f “ f ˝ F P Ω0pMq

On two unrelated (but later relevant) notes, we present a definition and a theorem.

Definition 2.3.2 (Velocity vectors of curves). Given a smooth curve γ : RÑM, we let

γ1pτq : R Q τ Ñ γ˚

ˆ

d

dt

ˇ

ˇ

ˇ

τ

˙

P TγpτqM

be the velocity vector to γ at t “ τ.

Theorem 2.3.3. Given F :M Ñ N and ω P ΩkpNq,

F ˚pdωq “ dpF ˚ωq

9



Proof. We will show this in the following way: First, we will show this is the case for 0-

forms, and 1-forms. Then, we will show how, as every k-form is a superposition of the

wedge product of k 1-forms, this follows for k-forms from the property holding on 1-forms.

First, to show that it holds for any 0-form f , we note that dfpXq “ Xpfq, so

pF ˚pdfqqpY q “ pdfqpF˚Y q

“ pF˚Y qpfq “ Y pf ˝ F q

dpF ˚fqpY q “ Y pF ˚fq

“ Y pf ˝ F q.

Now, to show this works for a one form, let’s consider an arbitrary one-form α “ fdg,

where f, g P C8pNq. It can be shown that every 1-form is a superposition of such forms, so

it suffices to prove the theorem for this case to prove it for all one forms.

dpF ˚αq “ dppF ˚fqpF ˚dgqq

“ dpF ˚fq ^ pF ˚dgq ` pF ˚fqdpF ˚dgq

“ pF ˚dfq ^ pF ˚dgq ` pF ˚fqdpdpF ˚gqq

“ F ˚pdf ^ dgq

“ F ˚pdαq.

Now, we arrive at our inductive step. Suppose we have that for all k-forms ϖ that dpF ˚ϖq “

F ˚pdϖq. Then, as every k` 1-form is the span of the wedge product of arbitrary 1-forms α

10



and k-forms ϖ, we need only show that

dpF ˚pα^ϖqq “ dppF ˚αq ^ pF ˚ϖqqq

“ pdpF ˚αqq ^ pF ˚ϖq ´ pF ˚αq ^ pdpF ˚ϖqq

“ pF ˚dαq ^ pF ˚ϖq ´ pF ˚αq ^ pF ˚dϖq

“ F ˚pdα^ϖq ´ F ˚pα^ dϖq

“ F ˚pdα^ϖ ´ α^ dϖq

“ F ˚pdpα^ϖqq.

Thus, with k “ 1 as our base case, we use induction to show that all k forms with k ě 1

satisfy the property, and as we’ve proven it for k “ 0, we have all differential forms satisfy

it.

Definition 2.3.4 (Orientation forms and orientable manifolds). Given an n-dimensional

manifold M, an orientation form is a n-form ω that is at no point equivalent to the 0 map.

If such a form exists, then M is said to be an orientable manifold. We say that pM,ωq is

an oriented manifold.

A global, ordered coframe tωiuni“1 induces a global orientation form ω1 ^ ¨ ¨ ¨ ^ ωn, and

a local ordered coframe (say on U Ď M) a local orientation form. Thus, by Thm. (2.2.6),

every local coordinate system induces a local orientation form. If these forms can be stitched

together in a smooth way, then M is orientable. Thus, if that can be done, it often becomes

the orientation form of the oriented manifold.

Definition 2.3.5 (Positively and negatively oriented forms). Given an oriented manifold

pM,ωq, any orientation form that can be written as fω for some smooth f :M Ñ Rą0 pă0q

is positively (negatively)-oriented.

11



Now, we turn our attention to submanifolds. A manifold being orientable does not imply

its submanifolds are as well - just consider the fact that the Möbius band, the most infamous

non-orientable surface, is a submanifold of R3, which is evidently orientable. However, if the

submanifold is orientable, we can induce an orientation after making some extra choices.

Theorem 2.3.6 (Induced orientation of submanifolds). Given an oriented n-manifold

pM,ωq and an orientable k-submanifold S Ď M, if we can select a collection of vector

fields N1, ¨ ¨ ¨ , Nn´k such that for all j,

Nj R ι˚pTSq,

then

ι˚ppN1, . . . , Nn´kq
␣ωq

is an orientation form on S, where ␣ is the interior multiplication ΩnpMqˆpΓpTMqqn´k Ñ

ΩkpMq defined by pV1, . . . , Vn´kq
␣ ω “ ωpV1, . . . , Vn´k, ¨, ¨, . . . q. Interior multiplication by

a vector field V may also be denoted ιV when confusion with an inclusion map is unlikely.

This is a good thing to know, but it isn’t all that relevant: for our purposes most

orientable submanifolds will just be given their own orientation form. However, there is

one place this will come in: the statement of Stokes’ theorem, which specifically requires us

to have an induced orientation for the boundary of a manifold (with boundary). In order

to make sense of this though, we first need to introduce the notion of an outward-pointing

vector field.

Definition 2.3.7 (Outward-pointing vectors and vector fields). Given a smooth

n-manifold with boundary M , and a point p P BM a vector v P TpM is outward-pointing,

if for some (and thus all) boundary coordinate chart pU,φq, the B
Bxn component of v is

negative. A vector field X on M points outward if for all p P BM, Xp points outward.

Now that we have defined such a vector field, we have everything we need built up in

12



order to induce an orientation on the boundary, as it is an pn´ 1q-manifold and we have a

vector field.

Theorem 2.3.8 (The Stokes orientation). If M is a smooth, oriented n-manifold with

boundary, then BM is an orientable manifold. Furthermore, given any vector fields X1, X2

pointing out of BM, then X1
␣ω and X2

␣ω are positively oriented with respect to eachother.

This equivalence class of orientations is called the Stokes’ Orientation.

Proof. cf. [Lee12, Prop. 15.24]

Example 2.3.9. Let D be the closed unit disk in R2 defined by tpx, yq P R2 : x2`y2 ď 1u.

Then, notice that BD “ tpx, yq P R2 : x2 ` y2 “ 1u. Let ιBD : BD ãÑ D be the inclusion of

BD into D. Notice an orientation on R2 induces one on D by restriction. Let ω :“ dx^ dy

be our orientation on R2. Then, as N :“ x B
Bx ` y

B
By is an outward-pointing vector field,

ι˚pN ␣ dx^ dyq “ ι˚
ˆˆ

x
B

Bx
` y

B

By

˙

␣ dx^ dy

˙

“ ι˚
ˆˆ

x
B

Bx

˙

␣ dx^ dy `

ˆ

y
B

By

˙

␣ dx^ dy

˙

“ ι˚ pxdy ´ ydxq ,

where we used that X␣pα^βq “ pX␣αq^β`p´1qdegαα^pX␣βq. This is our orientation

form on BD.

Definition 2.3.10 (Integrating differential forms on Rn, see [Tu11, Def. 23.8] and [Lee12, p.

402]). Let txiuni“1 be a coordinate system for Rn, inducing the orientation form dx1^ ¨ ¨ ¨^

dxn, and ω be an n-form on open subset U Ă Rn. This form is expressible as fpxqdx1 ^

¨ ¨ ¨ ^ dxn for some smooth function f : Rn Ñ R. The integral of ω over subset A Ă U is

defined as
ż

A
ω “

ż

A
fpxqdx1 ^ ¨ ¨ ¨ ^ dxn ”

ż

A
fpxqdx1 ¨ ¨ ¨dxn
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if the rightmost (Riemann) integral exists.

In other words, simply “erase the wedges,” as Lee puts it.

Definition 2.3.11 (Integration of differential forms on one chart, cf. [Lee12, p. 404], [Tu11,

eq. 23.7]). Suppose U Ď M is an open neighborhood of an oriented n-manifold M, and U

contains the compact support of an n-form ω. Further suppose that φ : U Ñ φpUq Ď Rn

is the coordinate diffeomorphism (i.e., each of its components is a coordinate function xi),

which induces an orientation on φpUq. Then let the integral of ω over M be defined as

ż

M
ω ”

ż

φpUq

pφ´1q˚ω.

Now, one of the things about smooth manifolds is that they are only locally diffeomorphic

to Rn, so many n-forms will have their support lie in more than one so-called “coordinate

chart.” By definition, a smooth manifold has an atlas, with finite open cover tUiui and

coordinate diffeomorphisms tφiui such that the so-called transition maps φi˝φ´1
j are smooth

for all i and j such that Ui X Uj ‰ 0. There may be differential forms with support on

multiple of the Ui. To extend Def. (2.3.11), we introduce the concept of a partition of unity,

a collection of smooth functions tεiui such that
ř

i εi “ 1, but each εi is only nonzero on

Ui. It is known that for a smooth manifold such a partition must exist [Lee12, Thm. 2.23].

Thus, for any n-form ω with compact support on M, we can decompose it into
ř

i εiω, and,

each term in the sum having compact support on only one Ui, then say that

ż

M
ω ”

ÿ

i

ż

φipUiq

pφ´1
i q

˚pεiωq.

It is known that, while this definition is built upon choices of open covers, coordinates,

and partitions of unity, it does not depend on any of those choices [Lee12, Prop. 16.4-5].

It is also worth noting that if S is a smooth k-submanifold of M with inclusion ιS : S ãÑ

14



M, and ω P ΩkpMq, then we often slightly abuse notation, saying that

ż

S
ω ”

ż

S
ι˚Sω.

Another useful property about integrating differential forms is that they are invariant under

pullbacks, which in turn gives us that differential forms are in fact coordinate-independent.

Theorem 2.3.12. Let f : U Ď M Ñ V Ď N be an orientation-preserving diffeomorphism

between open subsets of orientable manifolds M and N , and ω P ΩpNq. Then,

ż

M“f´1pNq

f˚ω “

ż

N
ω.

Proof. Assume without loss of generality that U and V are coordinate charts of M and

N respectively (if they are not, we can intersect them with the charts, and construct a

partition of unity, etc. and the following argument will still work).

Then, if φ : U Ñ φpUq Ď Rn and ψ : V Ñ ψpV q Ď Rn are coordinate charts, we have

that our assertion is equivalent to:

ż

φpUq

pφ´1q˚f˚ω “

ż

ψpV q

pψ´1q˚ω

ż

φpUq

pf ˝ φ´1q˚ω “

ż

ψpV q

pψ´1q˚ω.

Now, as we are working in coordinate charts, and as n-forms are the only forms with

non-vanishing integrals, we can write pψ´1q˚ω “ gpxqdx1 ^ ¨ ¨ ¨ ^ dxn and pf ˝ φ´1q˚ω “

hpxqdx1 ^ ¨ ¨ ¨ ^ dxn, where they are related by

pψ ˝ f ˝ φ´1q˚gdx1 ^ ¨ ¨ ¨ ^ dxn “ hdx1 ^ ¨ ¨ ¨ ^ dxn

pg ˝ κqdpx1 ˝ κq ^ ¨ ¨ ¨ ^ dpxn ˝ κq “ hdx1 ^ ¨ ¨ ¨ ^ dxn.
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where we’ve written that κ “ ψ ˝ f ˝ φ´1 for brevity. Now, expand dκi out in coordinates

to get that

pg ˝ κq

˜

ÿ

i

Bκ1

Bxi
dxi

¸

^ ¨ ¨ ¨ ^

˜

ÿ

i

Bκn

Bxi
dxi

¸

“ pg ˝ κqdet Jdx1 ^ ¨ ¨ ¨ ^ dxn,

where J ji “ Bjκi is the Jacobian of κ. Thus, we have that our assertion is equivalent to

ż

ϕpUq

g ˝ κ det Jdx1 ¨ ¨ ¨dxn “

ż

ψpV q

gdx1 ¨ ¨ ¨dxn,

which is true by the standard change-of-variables formula in multivariable calculus.

Example 2.3.13 (Line integrals). Let R2 be our ambient manifold, let ω “ fpx, yqdx `

gpx, yqdy, and let γ : ra, bs Ñ R2 be a C8 curve. Then we have that

ż

γpra,bsq
ω “

ż

ra,bs
γ˚ω

“

ż

ra,bs
pfpγxptq, γyptqqdγx ` gpγxptq, γyptqqdγ

yq .

We are playing fast and loose with the fact that charts are supposed to be over open sets

here with the knowledge that the boundary points will in the end comprise part of a set of

measure zero, and as such will not matter.

Now, we evaluate dγx and dγy with Thm. (2.2.7) and get that dγx “ dγx

dt dt and dγy “

dγy

dt dt, so we get the integral equal to

ż

ra,bs
pfpγxptq, γyptqqpγxq1ptq ` gpγxptq, γyptqqpγyq1ptqqdt,

which has taken the standard form of a line integral seen in calculus III for a vector field

fpx, yqx̂`gpx, yqŷ. Note that we are using an orientation given by the curve in the direction
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of increasing t in this calculation. In practice, when we give an orientable submanifold on

which we wish to integrate a form, it will come with its own orientation.

Theorem 2.3.14 (Stokes’ theorem). Given an orientable smooth n-manifold M with bound-

ary BM, and a differential pn´ 1q-form ω with compact support on M,

ż

M
dω “

ż

BM
ω.

Example 2.3.15 (The divergence theorem). Let V Ď R3 be a 3-submanifold with closed

boundary S ” BV. Let Fpx, y, zq “ Fxpx, y, zqx̂ ` Fypx, y, zqŷ ` Fzpx, y, zqẑ be a (Calculus

III-style) vector field. Let tUi, φi “ psi, tiqu be a coordinate atlas for S onto φipUiq Ď R2,

and εi a compatible partition of unity over S, ε̃i “ εi ˝ Si, Si ” φ´1
i , and ε1

i ” εi ˝ ι
´1,

restricted to where the map is well defined. Finally, let

pf, gqpx,yq ” fxgy ´ fygx

and let ι : S Ñ R3. be the inclusion. Let ri “ ι ˝ Si “ pr
x
i , r

y
i , r

z
i q. Then,

£

S

dS ¨ F “
ÿ

i

ĳ

φipUiq

dsidtiε̃ipppriqy, priqzqpsi,tiqpFx ˝ riq ` ppriqz, priqxqpsi,tiqpFy ˝ riq

` ppriqx, priqyqpsi,tiqpFz ˝ riqq

“
ÿ

i

ĳ

φipUiq

ε̃ipppriqy, priqzqpsi,tiqpFx ˝ riq ` ppriqz, priqxqpsi,tiqpFy ˝ riq

` ppriqx, priqyqpsi,tiqpFz ˝ riqqdsi ^ dti
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We have that ppriqx, priqyqpsi,tiqdsi^dti “ priq
˚pdx^dyq, which we can see by the fact that

r˚
i pdx^ dyq “ pr˚

i dxq ^ pr
˚
i dyq

“ dpr˚
i xq ^ dpr˚

i yq

“ drxi ^ dryi

“

ˆ

Brxi
Bsi

dsi `
Brxi
Bti

dti

˙

^

ˆ

Bryi
Bsi

dsi `
Bryi
Bti

dti

˙

“

ˆ

Brxi
Bsi

Bryi
Bti

´
Bryi
Bsi

Brxi
Bti

˙

dsi ^ dti.

Similar analysis holds for the pullbacks of all the other coframe 2-forms.

Thus,

£

S

dS ¨ F “
ÿ

i

ĳ

φipUiq

ε̃ippFx ˝ riqr
˚
i pdy ^ dzq ` pFy ˝ riqr

˚
i pdz ^ dxq ` pFz ˝ riqr

˚
i pdx^ dyqq

“
ÿ

i

ĳ

φipUiq

ε̃ippFx ˝ riqr
˚
i pdy ^ dzq ` pFy ˝ riqr

˚
i pdz ^ dxq ` pFz ˝ riqr

˚
i pdx^ dyqq

“
ÿ

i

ĳ

φipUiq

ε̃ir
˚
i pFxdy ^ dz ` Fydz ^ dx` Fzdx^ dyq

Thus, if we let ψ “ Fxdy ^ dz ` Fydz ^ dx` Fzdx^ dy, then we can write that
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£

S

dS ¨ F “
ÿ

i

ĳ

φipUiq

ε̃ir
˚
i ψ

“
ÿ

i

ĳ

φipUiq

r˚
i pε

1
iψq

“
ÿ

i

ĳ

φipUiq

S˚
i pι

˚pε1
iψqq

“
ÿ

i

ĳ

φipUiq

pφ´1
i q

˚pι˚ ˝ pε1
iψqq

“

ż

S
ι˚ψ

“

ż

BV “S
ψ.

Assuming ψ has compact support, then we can use Stokes’ theorem to rewrite this

integral as

ż

V
dψ.

Now, to calculate dψ, we use the definition of the exterior derivative to see that

dψ “ dpFxdy ^ dz ` Fydz ^ dx` Fzdx^ dyq

“ dFx ^ dy ^ dz ` dFy ^ dz ^ dx` dFz ^ dx^ dy

“

ˆ

BFx
Bx

`
BFy
By

`
BFz
Bz

˙

dx^ dy ^ dz

“ pdivFqdx^ dy ^ dz.
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Now, evaluating this integral, we get

ż

V
dψ “

ż

V
pdivFqdx^ dy ^ dz

“

¡

V

pdivFqdV,

establishing the divergence theorem as a special case of Stokes’ theorem.

2.4 de Rham Cohomology

The key insight that allows us to construct a form of cohomology out of differential forms

is that we have a sequence of spaces ΩkpMq, with a mapping d : ΩkpMq Ñ Ωk`1pMq which

satisfies d˝2 “ 0. In other words, we have an ideal candidate for a cochain complex in the

pair ptΩkpMqu8
i“´8, dq, (where ΩkpMq “ t0u for k ą n, n ă 0). Thus, in order to construct

a cohomology, we need only define our coboundaries and cocycles.

Definition 2.4.1 (Closed forms). A closed differential form α is one such that

dα “ 0.

Denote the set of closed forms of degree k as ZkpMq.

Definition 2.4.2 (Exact forms). An exact differential form α is one such that there exists

a differential form β satisfying

α “ dβ.

Denote the set of exact forms of degree k as BkpMq.

Notice that, as expected, d˝2 “ 0, meaning BkpMq Ď ZkpMq.

Definition 2.4.3 (The de Rham cohomology). Let the kth de Rham cohomology group be
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defined as

Hk
d.R.pMq ” ZkpMq{BkpMq.

It turns out that Stokes’ theorem expresses the duality between differential forms and

singular chain complexes in such a way that suggests that this de Rham cohomology is dual

to the singular homology. To see this, note that Stokes’ theorem essentially says that

pc, dωq “ pBc, ωq

when we define a bilinear form p¨, ¨q : CkpMq ˆ ΩkpMq by pc, ωq “
ş

c ω. Now, we will see

that this bilinear form induces a pairing between HrpMq and Hr
d.R.pMq.

Theorem 2.4.4 (The de Rham theorem). Let HrpM ; Rq be the singular homology of M

with coefficients in R, as defined in [Lee11, p. 343] and [Hat00, p. 153]. Then, the map

Λ : HrpM ;Rq ˆHr
d.R.pMq Ñ R

defined by Λprcs, rωsq ” pc, ωq “
ş

c ω is bilinear, well-defined, and non-degenerate. In other

words, Hr
d.R.pMq – pHrpMqq

˚.

Proof. I will only show the first two claims to be true. To see the last proved, cf. [Lee12, Ch.

18]. To prove the first, notice that p¨, ¨q is bilinear and thus, if Λ is well-defined, it will inherit

this structure. Thus, we must only show that for any c P ZkpMq, b P BkpMq and ω P ZkpMq

and β P BkpMq, that
ż

c`b
pω ` βq “

ż

c
ω.

Equivalently, we must show that

ż

b
ω,

ż

b
β, and

ż

c
β “ 0.
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We can show the first two to be true, by noticing that b P BkpMq means that it is equal to

Bd for some d P Ck`1pMq. Thus, we have by Stokes’ theorem, that for any α P ZkpMq,

ż

Bd
α “

ż

d
dα “

ż

d
0 “ 0,

by definition of ZkpMq. As BkpMq Ď ZkpMq, this means that

ż

b
ω “

ż

b
β “ 0.

Now, we will consider
ż

c
β.

As β P BkpMq, β “ dα for some α P Ωk´1pMq. Thus, by Stokes’ theorem, we have that

ż

c
dα “

ż

Bc
α “

ż

0
α “ 0,

as c P ZkpMq, so Bc “ 0.

Example 2.4.5 (de Rham cohomology of a circle). We can view S1 as tz P C : |z| “ 1u.

Let cis : RÑ S1 be the map cispxq “ eix. cis is a smooth covering map, meaning that it is

also a smooth surjective submersion [Lee12, Prop. 4.33]. This means that cis˚ is injective

[Tu11, Prob. 18.8].

Clearly, as dimS1 “ 1, ΩkpS1q “ 0 for k ą 1. As such, it is obvious that every 1-form is

closed, and that there are no exact 0-forms. But which forms are exact?
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If β P Ω1pS1q, is exact, then β “ df for f P C8pS1q. Then,

ż

S1

β “

ż

S1

df

“

ż

BS1

f

“

ż

tu

f “ 0.

Now, suppose that β P Ω1pS1q and
ş

S1 β “ 0. Note that

ż

S1

β “

ż

cispr0,2πsq

β

“

ż

r0,2πs

cis˚β.

Let fptq :“
ş

γpIq
β for some β such that

ş

S1 β “ 0, where γ : I Ñ S1 is an arbitrary curve

in S1 between 1 and cisptq. Then, up to a reparametrization, γ “ cis, with x P r0, t` 2πns,

n P Z. As
ş

S1 β “ 0, this is a well-defined map.

Let cis˚β “ gptqdt. Then, fptq “
ş

cisr0,ts β “
ş

r0,ts cis
˚β “

ş

r0,ts gptqdt “
şt
0 gptqdt. By

the fundamental theorem of calculus, f 1ptq “ gptq, so clearly, df “ gptqdt. Now, we know

that gptqdt “ cis˚β, so df “ cis˚β. Define f̃ppq : S1 Ñ R by f̃ppq “ fpcis´1ppqq. Clearly

by the analysis above f̃ppq is well defined (and smooth). Furthermore f “ cis˚f̃ . Thus,

dpcis˚f̃q “ cis˚β, so cis˚pdf̃q “ cis˚β. As cis˚ is injective, df̃ “ β, meaning β is exact.

Now, we see that the map β Ñ
ş

S1 β descends into a well-defined map H1pS1q Ñ R.

Furthermore, the map is injective, because if any two forms β1, β2 have the same integral,

then β1 ´ β2 integrates to 0, meaning it is exact, meaning rβ1s “ rβ2s. But does there exist

any non-zero cohomology class in H1pS1q? To answer in the affirmative, we must provide a

closed one-form on S1 with nonzero integral.
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Let α “ p´yqdx`xdy
x2`y2

P Ω2pR2q, and ι : S1 ãÑ R2zt0u be the inclusion of the circle into

the punctured plane defined by ιz “ pRez, Imzq. Clearly, dα “ 0 on the punctured plane.

Now consider ι˚α. This is closed on S1 as well. We have that

ż

S1

ι˚α “

ż

S1

ι˚
ˆ

p´yqdx` xdy

x2 ` y2

˙

“

ż

r0,2πs

cis˚ι˚
ˆ

p´yqdx` xdy

x2 ` y2

˙

“

ż

r0,2πs

ˆ

p´y ˝ ι ˝ cisqdpx ˝ ι ˝ cisq ` x ˝ ι ˝ cisdpy ˝ ι ˝ cisq

x ˝ ι ˝ cis2 ` y ˝ ι ˝ cis2

˙

“

ż

r0,2πs

´ sin td cos t` cos td sin t

cos2 t` sin2 t

“

ż

r0,2πs

dt

“ 2π

Thus, we have a form ι˚α which is closed, inexact, and with nonzero integral on S1. That

means that
ş

S1 is a surjective map to the reals, because for any x P R, x
2π ι

˚α integrates to

x. Thus, we have a one-to-one correspondence between H1pS1q and R.

Now, let’s consider which 0-forms are closed. We know that constant functions are

closed 0-forms, but are they the only closed 0-forms? Suppose f P C8pS1q and df “ 0.

Then cis˚df “ 0 as well. We then have that dpcis˚fq “ 0, meaning that Xpf ˝ cisq “ 0 for

all X P TR. As all X P TR can be written as g d
dt , we then have that for all g P C8pRq,

for all t, gptq ddtfpcisptqq|t “ 0, which is clearly only possible if f ˝ cis is a constant map,

which in turn means f must be constant, as cis satisfies cispt` δq ‰ cisptq if δ ă 2π. Thus,

H0pS1q “ tconstant functionsu{tu “ tconstant functionsu – R.
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Chapter 3: Equivariant Cohomology

Often one has to deal with spaces which have some sort of symmetry. These symmetries are

usually encoded in terms of group actions. These group actions give us more information

about our manifold, which we would like to be able to take into account when we analyze

the cohomology of our space, but the standard de Rham cohomology does not do so. As

such, we will have to introduce a new form of cohomology, equivariant cohomology, which

works in the category of G-manifolds rather than merely smooth manifolds.

We begin this chapter by introducing the necessary theory of Lie groups and Lie algebras,

as well as group actions, before finally giving a solid definition of the relevant model of

equivariant cohomology we will be using.

3.1 Lie Groups and Lie Algebras

Lie groups are the natural choice of object to describe continuous symmetries. They appear

all over in both physics and math, and will be the only type of group we will be considering.

Definition 3.1.1 (Lie group). Let G be a smooth manifold, and m : G ˆ G Ñ G and

i : G Ñ G smooth maps. Let G be a group with multiplication m and inversion i. Then

pG,m, iq is a Lie group.

We also will make use of the two functions of left and right multiplication, ℓgp¨q “ mpg, ¨q

and rg “ mp¨, gq.

Definition 3.1.2 (Lie algebra). A vector space V endowed with a bilinear product r¨, ¨s :

V ˆ V Ñ V is a Lie algebra if

(a) rx, xs “ 0 for all x P V,
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(b) rx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0 for all x, y, z P V.

If these properties are satisfied, r¨, ¨s is called the Lie bracket, or the commutator.

It follows from this definition that the Lie bracket is anticommutative.

Now, one may wonder why Lie algebras and Lie groups are related. After all, they

seem to have unconnected definitions. However, that separation is only skin-deep; every

Lie group gives rise to a corresponding Lie algebra.

Definition 3.1.3 (Lie algebra of a Lie group). The Lie algebra g of a Lie group G is defined

as g ” TeG, where e is G’s identity. g is endowed with the Lie bracket r¨, ¨s : TeGˆ TeGÑ

TeG defined by

rX,Y spfq “ XpỸ pfqq ´ Y pX̃pfqq,

where given Z P TeG, Z̃ is the vector field defined by Z̃g “ pℓgq˚Z.
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We see that rX,Y s P TepGq by considering

rX,Y spfgq “ XpỸ pfgqq ´ Y pX̃pfgqq

“ XpfỸ pgq ` gỸ pfqq ´ Y pfX̃pgq ` gX̃pfqq

“ fpeqXpỸ pgqq ` pỸ pgqqpeqXpfq ` gpeqXpỸ pfqq ` pỸ pfqqpeqXpgq

´ fpeqY pX̃pgqq ´ pX̃pgqqpeqY pfq ´ gpeqY pX̃pfqq ´ pX̃pfqqpeqY pgq

“ fpeqpXpỸ pgqq ´ Y pX̃pgqqq ` gpeqpXpỸ pfqq ´ Y pX̃pfqqq

` pỸ pgqqpeqXpfq ` pỸ pfqqpeqXpgq ´ pX̃pgqqpeqY pfq ´ pX̃pfqqpeqY pgq

“ fpeqpXpỸ pgqq ´ Y pX̃pgqqq ` gpeqpXpỸ pfqq ´ Y pX̃pfqqq

` Y pgqXpfq ` Y pfqXpgq ´XpgqY pfq ´XpfqY pgq

“ fpeqpXpỸ pgqq ´ Y pX̃pgqqq ` gpeqpXpỸ pfqq ´ Y pX̃pfqqq

“ fpeqrX,Y spgq ` gpeqrX,Y spfq,

meaning that it is a derivation at e. We used that pZ̃pfqqpeq “ pZ̃epfqq “ Zpfq to get to

the penultimate equality. It is a straightforward, if somewhat tedious, calculation to show

that this Lie bracket satisfies the Jacobi identity [Lee12, Prop. 8.28].

Now, as g is a vector space, and G is a group, one may consider the representations of

G on g. Luckily for us, there is one natural choice.

Definition 3.1.4 (The adjoint representation). Let cgphq “ ℓgr
´1
g phq “ ghg´1 be the

conjugation map. Then we have that Adg ” pcgq˚|TeG : TeG Ñ TeG, the adjoint repre-

sentation, is the restriction of the pushforward of the conjugation to the Lie algebra.

This is referred to as a representation because Ad : g Ñ Adg is a homomorphism from

G to Autg, or in other words, a representation of G.
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There is also a map from gÑ G, called the exponential map, which can be quite useful.

Definition 3.1.5 (The exponential map). Let γX : RÑ G be the unique (we will not prove

this) smooth homomorphism such that γ1
Xp0q “ X. Then exponential map exp : g Ñ G is

defined as exppXq “ γXp1q. exppXq can also be written as eX .

Theorem 3.1.6.

γXptq “ expptXq.

Proof. To show that expptXq is a smooth homomorphism, we consider the map λ : τ Ñ

γXptτq. Clearly, this is a smooth homomorphism. Now, by the fact that the pushforward of

a scalar multiplication µt : xÑ tx is in turn defined by µt˚pBx|x0q “ tBx|ptx0q, and that push-

forwards are linear maps, we see that λ1p0q “ λ˚pBτ |0q “ pγXq˚pµ
t
˚pBτ |0q “ pγXq˚ptBτ |0q “

tpγXq˚pBτ |0q “ tX.

Thus, we see that λpτq “ γXptτq “ γtXpτq, which in turn means that expptXq “

γtXp1q “ γXptq.

Theorem 3.1.7. Given some map F : GÑM, we have that

F˚pXq “ pF ˝ γXq
1p0q.

We also have that Xpfq “ pf ˝ γXq1p0q, with the derivative taken as a standard derivative

rather than a velocity vector in the latter case.

Proof. This follows from recalling that a curve’s velocity at t is the pushforward of Bt|t.
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Then, we see that

pF ˝ γXq
1p0q “ F˚ ˝ pγXq˚pBt|0q

“ F˚ppγXq˚pBt|0qq

“ F˚pγ
1
Xp0qq

“ F˚pXq.

To show that Xpfq “ pf ˝γXq1p0q, taken in the sense of standard limit-based derivatives

rather than pushforwards, notice that

Xpfq “ pγ1
Xp0qqpfq

“ ppγXq˚pBt|t“0qqpfq

“ Bt|t“0fpγXptqq “ pf ˝ γXq
1p0q.

This proof in fact holds more generally. Given a map F : M Ñ N, and any curve

ΓV : RÑM with V P TΓV p0qM such that Γ1
V p0q “ V, F˚pV q “ pF ˝ ΓV q

1p0q. Furthermore,

if pg ¨ γXqptq “ g ¨ γXptq, we have that X̃gpfq “ pf ˝ pg ¨ γXqq
1p0q, as X̃g “ pℓgq˚X, so

X̃gpfq “ Xpf ˝ ℓgq

“ pf ˝ ℓg ˝ γXq
1p0q

“ pf ˝ pg ¨ γXqq
1p0q,

once again as actual derivatives, not pushforwards. Thus, X̃pfq P C8pGq sends g P M to
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pf ˝ pg ¨ γXqq
1p0q.

This allows us to rewrite the Lie bracket in terms of a derivative of a pushforward.

Theorem 3.1.8. Given X,Y P g,

rX,Y s “ lim
tÑ0

pre´tX q˚pℓetX q˚Y ´ Y

t

“
d

dt

ˇ

ˇ

ˇ

t“0
ppre´tX q˚Ỹ qe.

Proof. We begin with the definition of the Lie bracket of g:

rX,Y s “ X ˝ Ỹ ´ Y ˝ X̃.

Acting on some function f, that gives us

rX,Y spfq “ XpỸ pfqq ´ Y pX̃pfqq

“ ppỸ pfqq ˝ γXq
1p0q ´ ppX̃pfqq ˝ γY q

1p0q

“
B2

BtBτ
pfpγY ptq ¨ γXpτqq ´ fpγXptq ¨ γY pτqq

ˇ

ˇ

ˇ

t“τ“0

“
B2

BtBτ

`

fpetY ¨ eτXq ´ fpetX ¨ eτY q
˘

ˇ

ˇ

ˇ

t“τ“0

Now let’s consider

ˆ

d

dt

ˇ

ˇ

ˇ

t“0
ppre´tX q˚Ỹ qe

˙

pfq “
d

dt

ˇ

ˇ

ˇ

t“0
ỸetX pf ˝ re´tX q

“
d

dt

`

pf ˝ re´tX ˝ petX ¨ γY qq
1p0q

˘

ˇ

ˇ

ˇ

t“0

“
B2

BtBτ
pfpetX ¨ eτY ¨ e´tXqq

ˇ

ˇ

ˇ

t“τ“0
.

Let F pt1, τ, t2q “ fpet1X ¨ eτY ¨ e´t2Xq. By the chain rule, B
BtF pt, τ, tq|t“0 “

B
Bt1
F p0, τ, 0q `
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B
Bt2
F p0, τ, 0q. Thus, we have that

B2

BtBτ
pfpetX ¨ eτY ¨ e´tXqq

ˇ

ˇ

ˇ

t“τ“0
“
B

Bτ

ˇ

ˇ

ˇ

ˇ

τ“0

˜

B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

pfpetX ¨ eτY qq

`
Bp´tq

Bt

B

Bp´tq

ˇ

ˇ

ˇ

ˇ

p´tq“0

pfpeτY ¨ e´tXqq

¸

“
B2

BtBτ

`

fpetY ¨ eτXq ´ fpetX ¨ eτY q
˘

ˇ

ˇ

ˇ

t“τ“0
“ rX,Y spfq,

where we relabeled ´t as t to get to the last line. Thus, as the two vectors have equal

action on any functions, they themselves in turn must be equal.

We also have that the exponential map is a natural transformation between Lie algebras

and Lie groups.

Lemma 3.1.9. If f : G Ñ H is a smooth homomorphism of Lie groups, then f˚ : g Ñ h

satisfies fpexppXqq “ exppf˚pXqq for all X P g.

Proof. Note that fpexppXqq “ fpγXp1qq. Consider fpγXptqq. Clearly f ˝ γX : R Ñ H is

a smooth homomorphism. Furthermore, pf ˝ γXq1p0q “ pf ˝ γXq˚pBt|0q “ f˚pXq, so it

is the unique smooth homomorphism γf˚X : R Ñ N such that γ1
f˚X

p0q “ f˚X. Thus,

exppf˚Xq “ γf˚Xp1q “ fpγXp1qq “ fpexppXqq.

Corollary 3.1.9.1. For all g P G, X P g,

exppAdgpXqq “ g exppXqg´1.

We are now equipped to show that the derivative of the adjoint representation is the

commutator.

Theorem 3.1.10. Let Ad : G Ñ Autpgq be the function defined by Adpgq “ Adg Then

Ad˚ : gÑ TIAutpgq – Endpgq satisfies pAd˚pXqqpY q “ rX,Y s.
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We first prove a technical lemma that helps simplify handling the pushforwards of maps

to Autpgq.

Lemma 3.1.11. Let F : G Ñ Autpgq be a smooth Lie group homomorphism, and let

F rY s : G Ñ g be defined by pF rY sqpgq “ pF pgqqpY q. Then, we have that pF˚pXqqpY q “

pF rY sq˚pXq, with F˚ : gÑ Endpgq and pF rY sq˚ : gÑ g.

Proof.

F˚pXq “
d

dt
F petXq

ˇ

ˇ

ˇ

t“0

pF˚pXqqpY q “

ˆ

d

dt
F petXq

ˇ

ˇ

ˇ

t“0

˙

pY q

“
d

dt
ppF petXqqpY qq|t“0.

where, as Autpgq and g are finite dimensional vector spaces and F is smooth, we can treat

the right hand sides as actual derivatives.

Now, consider ppF rY sq˚pXqq. We have that

ppF rY sq˚pXqq “
d

dt
F rY spetXq

ˇ

ˇ

ˇ

t“0

“
d

dt
pF petXqqpY q

ˇ

ˇ

ˇ

t“0

“ pF˚pXqqpY q.

Proof of Thm. (3.1.10). First, we need to explain why TAutpgq – Endpgq. As Autpgq “

tM P Endpgq : detM ‰ 0u, and we know that the determinant is continuous (as it is a

polynomial function of matrix entries, which are linear functions Endpgq Ñ R) by the fact

that the preimage of an open set under a continuous map is open, we see that Autpgq is

an open submanifold of Endpgq. As we know that given an open submanifold U Ď M that

32



TpU – TpM, we see that TIpAutpgqq – TIpEndpgqq – Endpgq, as the tangent space to a

finite-dimensional vector space V is isomorphic to V .

Now, to evaluate the pushforward of Ad at the identity, we make use of Lemma (3.1.11)

to say that, if ArY s : GÑ g is defined by ArY spgq “ AdgpY q

pAd˚pXqqpY q “ pArY sq˚pXq

“
d

dt
AdetX pY q

ˇ

ˇ

ˇ

t“0

“
d

dt
pℓetX ˝ re´tX q˚ Y

ˇ

ˇ

ˇ

t“0
.

Now, as this is a proper derivative, and thus an element of g, we can consider its action on

a function f P C8pGq. We have that

ppAd˚pXqqpY qqpfq “

ˆ

d

dt
pℓetX ˝ re´tX q˚ pY q

ˇ

ˇ

ˇ

t“0

˙

pfq

“
d

dt
pppℓetX ˝ re´tX q˚ Y qpfqq

ˇ

ˇ

ˇ

t“0

“
d

dt
Y pf ˝ ℓetX ˝ re´tX q

ˇ

ˇ

ˇ

t“0

“
B2

BtBτ
fpetXeτY e´tXq

ˇ

ˇ

ˇ

t“τ“0
,

which, as we’ve shown above in Thm. (3.1.8) is just rX,Y spfq. Thus, we have that

pAd˚pXqqpY q “ rX,Y s, so Ad˚ : gÑ Endpgq sends X Ñ rX, ¨s.

Now, we come to a remarkable result relating three of the most important operations

in Lie groups and Lie algebras: the exponential map, the Lie bracket, and the adjoint

representation.
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Theorem 3.1.12. Given X P g,

AdeX p¨q “ ExpprX, ¨sq,

where Exp : Endpgq Ñ Autpgq is defined by

Exppfq “
8
ÿ

k“0

pfq˝k

k!
.

Proof. Note that Endpgq is a Lie algebra with bracket rf, gs “ f ˝ g´ g ˝ f. In this context,

it is fairly straightforward to show that Exp is defined for all of Endpgq [Hal15, Prop 2.1],

and is the exponential map for this Lie algebra, mapping it into Autpgq, the Lie group in

this context [Hal15, Prop 2.3].

Thus, we see that, as Ad˚pXq “ rX, ¨s by Thm. (3.1.10), the result is a straighforward

application of Lemma (3.1.9).

Note that while we haven’t defined a norm for g or Endpgq, if G (and thus g and Endpg)

is finite dimensional, which it is for the concerns of this paper, all norms are equivalent, so

convergence makes sense.

Corollary 3.1.12.1. Given X,Y P g such that rX,Y s “ 0, then AdeX pY q “ Y.

Finally, note once again that the Lie bracket is intrinsically tied up with commutativity,

in that the Lie algebra of an abelian Lie group has trivial bracket.

Theorem 3.1.13. If G is an Abelian Lie group, then for any X,Y P g, rX,Y s “ 0.

Proof. Notice that if G is Abelian, cg “ idG for all g P G. Thus, the differential, by which

the adjoint representation is defined, must be the constant map which takes g Ñ idg. Thus,

the pushforward of Ad must be the zero map. Thus, as Ad˚pXq “ rX, ¨s, we see that

rX,Y s “ 0 for all X,Y P g.
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3.2 Group Actions

Lie groups and Lie algebras are a fascinating subject in their own right, but for our purposes,

we care about them insofar as they are related to symmetries, and symmetries are properties

of a space, that is, a smooth manifold. Thus, we need to have a way to relate them to

manifolds. This is where the language of group actions comes in.

Definition 3.2.1 (Group actions, cf. [Lee12],[Tu20]). Let G be a group, and M a smooth

manifold. A left group action is a homomorphism µ : G Ñ DiffpMq, that is, a map µ

that sends g to µpgq : M Ñ M in such a way that µpg1g2q “ µpg1q ˝ µpg2q. We will also

denote µpgq by µg or, given p PM, by g ¨ p. A right group action is an antihomomorphism

µ : G Ñ DiffpMq, i.e., a map such that µpg1q ˝ µpg2q “ µpg2g1q. Right group actions may

also be denoted by µg or, given p PM, by p ¨ g

One often calls a smooth manifold M with a group action µ : G Ñ DiffpMq a smooth

G-manifold.

We will work with left actions mostly for the rest of this thesis except when discussing

principal bundles, for which right actions are more commonly used. Note that a left action

l can be made into a right action by letting rpgq ” lpg´1q, so that rpghq “ lppghq´1q “

lph´1g´1q “ lph´1q ˝ lpg´1q “ rphq ˝ rpgq, and vice versa.

3.2.1 Types of Group Actions

Now we will introduce some specific classes of group actions we make use of later.

Definition 3.2.2 (Free group actions). A group action µ on M is free if for all p P M,

g P GztIu, µgppq ‰ p.

Definition 3.2.3 (Transitive group actions). A group action µ on M is transitive if for any

points p1, p2 PM there exists g P G such that µgpp1q “ p2.

One important property a group action is whether or not it leaves some points fixed. If

it does, we often care about those specific points.
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Definition 3.2.4 (Fixed points). Given a G-manifold M, p P M is a fixed point of M if

for all g P G, µgp “ p. The set of fixed points is denoted MG.

3.2.2 Fundamental Vector Fields

Fundamental vector fields characterize the infinitesimal behaviour of our group action at

points. For our purposes, though, they will be primarily used in order to “include” the Lie

algebra g into the space of vector fields on M.

Definition 3.2.5 (The fundamental vector field). Let the map µppq : G Ñ M be defined

as µppqpgq “ µgppq. The fundamental vector field X# associated to X P g “ TeG is defined

as

pX#qp “ pµppqq˚pXq.

Due to fundamental vector fields, we can speak of interior multiplication by an element

of X P g, in that ιX ” ιX# .

Furthermore, we have that the map # : X Ñ X# is G-equivariant.

Theorem 3.2.6. Let g P G, X P g, and M be a smooth G-manifold. Then,

pAdgXq
# “ µpgq˚X

#.

Proof. Let’s start with the right-hand side:

pµpgq˚X
#qp “ µpgq˚ ˝ µpg

´1 ¨ pq˚X.

µpgq ˝µpg´1pq sends h to pghg´1q ¨p “ cgphq ¨p “ µppq ˝ cgphq, so µpgq ˝µpg´1 ¨pq “ µppq ˝ cg

Now, recalling that Adg “ pcgq˚, and using the chain rule for pushforwards, we see that

ppµpgqq˚X
#qp “ pµppq ˝ cgq˚X “ µppq˚ppcgq˚Xq “ µppq˚AdgpXq “ pAdgXq

#
p .
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3.2.3 Quotient Manifolds

When we have a smooth G-manifold M , we can consider the quotient space M{G consisting

of the set of G-orbits of points. This is a topological space, but in some cases we can impose

more structure.

Theorem 3.2.7. Let G be a compact manifold acting smoothly and freely on a smooth man-

ifold M. Then M{G is also a smooth manifold with dimension dimM´dimG. Furthermore,

the canonical projection π :M ÑM{G is a smooth submersion.

Proof. cf. [Lee12, Thm. 21.10].

This theorem starts to help us build intuition as to what we want out of our new form

of cohomology. When G acts freely on M, it would be nice for our cohomology to simply

take the form of H‚pM{Gq. However, we cannot just have it be H‚pM{Gq in all cases.

Two reasons are illustrative of the inadequacy of such a model. First, in the general case,

M{G is not always well-behaved enough to work with. M{G is only guaranteed to be a

manifold for free actions. Second, even if M{G is a manifold for a non-free action, it may

have trivial cohomology useless for us. Tu gives us the example of a sphere being rotated

around an axis. That quotient manifold is a closed interval, which has trivial cohomology,

thus stripping out any information we would find interesting.

3.3 The Cartan Model

Now we will introduce the model for equivariant cohomology we will use for the rest of this

paper, the Cartan model. It is worth noting that there are other models for equivariant

cohomology, and that all of the models only correspond in the case when G is a compact,

connected Lie group.
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Definition 3.3.1 (Symmetric powers). The k-th symmetric power of a vector space V,

denoted SkpV q, is defined as the quotient of
Śk

1 V by the subspace spanned by the union

of the following 3 sets:

S1 ” tpv1, v2, . . . , vj , . . . , vi, . . . , vkq|v1, ¨ ¨ ¨ , vk P V, 1 ď i, j ď ku

S2 ” tpv1, v2, . . . , avm, . . . , vkq ´ apv1, v2, . . . , vm, . . . , vkq|v1, ¨ ¨ ¨ , vk P V, 1 ď m ď ku

S3 ” tppv1, v2, . . . , vm ` wm, . . . , vkq ´ pv1, v2, . . . , vm, . . . , vkq

´ p0, . . . , wm, . . . , 0qq|v1, ¨ ¨ ¨ , vk, wm P V, 1 ď m ď ku.

Definition 3.3.2 (The symmetric algebra). Given a vector space V, the symmetric algebra

over V, SpV q is defined as

8
à

k“0

SkpV q

with a product _ : SkpV q ˆ SmpV q Ñ Sk`vpV q defined by

rpu1, . . . , ukqs _ rpw1, . . . , wmqs “ rpu1, . . . , uk, w1, . . . , wmqs.

As such, for v1 ‰ v2 ‰ ¨ ¨ ¨ ‰ vm, we denote rpv1, v2, ¨ ¨ ¨ , vmqs by v1_v2_¨ ¨ ¨_vm, or simply

v1v2 ¨ ¨ ¨ vm. If some vectors are equal, we can consolidate them like so: vp11 v
p2
2 ¨ ¨ ¨ v

pm
m , where

pk is the number of times vk is multiplied.

Theorem 3.3.3. Given any basis tviun1 for a vector space V, SpV q – Rrv1, . . . , vns, with

SpV q’s product corresponding to polynomial multiplication, and vice versa.

Definition 3.3.4 (Polynomial maps on a vector space). Given a vector space V with dual

basis ω1, ω2, . . . , ωn and an element f “
ř

I aIpω
1qi1 ¨ ¨ ¨ pωnqin (summing over all multi-

indices) of RrV ˚s ” Rrω1, . . . , ωns, a polynomial map on V prf s : V Ñ R is the map defined
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by

prf spvq “
ÿ

I

aIpω
1pvqqi1 ¨ ¨ ¨ pωnpvqqin .

Note that a polynomial map on g prαs is in one-to-one correspondence with an element

of Spg˚q, and that it (and thus α as well) is endowed with a g-action in the following way:

g ¨ prαspXq “ prαspAdg´1pXqq.

Now, consider the space Spg˚qbΩpMq, which consists of polynomial maps β : gÑ ΩpMq.

ΩpMq has a natural G-action of g ¨ ω “ µ˚
g´1ω, the pullback of the inverse G-action on M

(we need it to be µ˚
g´1 because µ˚

pghq´1 “ µ˚
h´1g´1 “ µ˚

g´1µ
˚
h´1 . Alternatively, this follows

from stipulating that for ω P Ω1pMq, v P T pMq, pg ¨ ωqpg ¨ vq “ ωpvq and extending to the

whole exterior algebra). Thus, we can speak of Spg˚q b ΩpMq as a G-space with action

g ¨ pαb ωq “ pg ¨ αq b pg ¨ ωq,

or equivalently, for any X P g,

pg ¨ βqpXq ” g ¨ βpAdg´1pXqq “ µ˚
g´1βpAdg´1pXqq.

The space of all invariant forms γ, which satisfy g ¨ γ “ γ for all g P G, is denoted

pSpg˚qbΩpMqqG, or ΩGpMq. Elements of ΩGpMq can be viewed asG-equivariant polynomial

maps p : g Ñ ΩpMq, i.e. polynomial maps such that ppg ¨Xq “ g ¨ ppXq, as we know that

for an invariant form β, g ¨ βpAdg´1pXqq “ βpXq for all g P G, so

βpAdgpXqq “ g ¨ βpAdg´1pAdgpXqqq “ g ¨ βpXq.

39



Now, let’s consider the Cartan differential D :

pDαqpXq ” dpαpXqq ´ ιXpαpXqq.

There are two things to note about this: D2 ‰ 0, but when we restrict to the invariant

forms, ΩGpMq, it does square to 0 (we will prove this momentarily). To see that we even

can restrict D to ΩGpMq, note that

DαpAdgpXqq “ dpαpAdgpXqqq ´ ιAdgpXqpαpAdgpXqqq

“ dpµ˚
g´1αpXqq ´ ιAdgpXqpµ

˚
g´1αpXqq

“ µ˚
g´1 pdpαpXqq ´ ιXαpXqq

“ µ˚
g´1ppDαqpXqq

where to get from the second to the third line we used Thm. (2.3.3), (3.2.6), and that

ιXpf
˚ωq “ f˚pιf˚Xωq.

Second, note that D is not compatible with the graded structure of ΩpMq, in the sense

that if α : g Ñ ΩkpMq, Dα doesn’t send g to Ωk`1pMq, so the space of invariant forms

must have a more nontrivial grading, which happens to be the following:

ΩkGpMq ”
à

2a`b“k

´

Sapg˚q b ΩbpMq
¯G

.

We will demonstrate that this grading is compatible with D momentarily as well.

To show this is a proper cochain complex, we start to examine this with a definite

basis of g, tXiu
k
i“1 and corresponding dual basis tuiuki“1 such that uipXjq “ δij . Note that

X “
ř

i u
ipXqXi. Thus, ιX “ ιř

i u
ipXqXi

“
ř

i u
ipXqιXi , which shows us how X Ñ ιXαpXq

has the same degree as X Ñ dpαpXqq; while the degree as a differential form decrements,
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the degree as a polynomial goes up by one, meaning the total degree as an equivariant form

increments for both terms. With this in mind, we can finally show that ΩGpMq is a cochain

complex.

Theorem 3.3.5.

pΩ‚
GpMq, Dq

forms a cochain complex.

Proof. We have already shown above how D sends ΩkGpMq to Ωk`1
G pMq. To finish this proof

we need to show that D2 “ 0 on ΩGpMq. To do this, let’s expand it out:

pD2αqpXq “ DpDαqpXq

“ dppDαqpXqq ´ ιXppDαqpXqq

“ dpdpαpXqq ´ ιXpαpXqqq ´ ιXpdpαpXqq ´ ιXpιXpαpXqqqq

“ ´pdpιXpαpXqqq ` ιXpdpαpXqqqq

“ ´LX#αpXq “ 0

Where to get from the third to fourth lines we used that ι2x “ d2 “ 0, and to get from the

fourth to the fifth, we used Cartan’s formula for the Lie derivative. To get that the Lie

derivative of αpXq along X# was 0, we used that

pLX#αpXqq “
d

dt

ˇ

ˇ

ˇ

t“0
µ˚
etXαpXq

“
d

dt

ˇ

ˇ

ˇ

t“0
αpAde´tXXq.
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By Cor. (3.1.12.1), we know that

Ade´tX pXq “ X,

which is t-invariant, meaning that LX#αpXq “ 0, which in turn implies D2 “ 0.

It is also apparent that if α and β are equivariant forms, the form α ^ β defined by

pα^ βqpXq “ αpXq ^ βpXq is also equivariant, as

pα^ βqpAdgXq “ αpAdgXq ^ βpAdgXq

“ pµ˚
g´1αpXqq ^ pµ

˚
g´1βpXqq

“ µ˚
g´1pαpXq ^ βpXqq

“ pµ˚
g´1pα^ βqqpXq.

If α “
ř

I u
IωI and β “

ř

J u
JϖJ , then α ^ β “

ř

I,J u
IuJωI ^ ϖJ , where I and J are

multiindices, and tuiui is a basis of g˚.

Now, as we have created a cochain complex, we can create a cohomology in the standard

way: Let ZkG “ tα P ΩkGpMq : Dα “ 0u and Bk
GpMq “ tβ P Ω

k
GpMq : β “ Dγ, γ P Ωk`1

G pMqu

be the spaces of equivariant cocycles and coboundaries respectively. Note that β P ZkGpMq

doesn’t mean βpXq P ZkpMq, or even βpXq P Z‚pMq, nor does β P Bk
GpMq mean that

βpXq P B‚pMq. In fact, this is false quite often. Irregardless, one can define the kth Cartan

equivariant cohomology group as Hk
GpMq :“ ZkGpMq{B

k
GpMq.

Note that H‚
GpMq becomes a ring under the multiplication rαs^ rβs “ rα^βs, which is

well-defined because if α P Zk1G pMq and β “ Dγ P Bk2
G pMq, α^ pDγq “ p´1q

k1Dpα^ γq `

p´1qk1pDαq ^ γ “ Dpp´1qk1α^ γq P Bk1`k2
G pMq.
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3.3.1 Circle and Torus Actions

Now let us consider the prime examples of the Cartan model we will see in the next section:

circle and torus actions.

Notice, that as both those are Abelian, that we can simplify ΩGpMq considerably, as

Ad : GÑ tidgu, so for any α P ΩGpMq

pg ¨ αqpXq “ µ˚
g´1αpAdg´1pXqq “ µ˚

g´1αpXq,

so for α to be invariant, it need merely be in Spg˚q b ΩpMqG, or, given dual basis tuiuki“1,

ΩpMqGru1, u2, . . . , uks, i.e. an element of the space of G-invariant-form-valued polynomial

maps on g. For a circle S1, there is only one element of the dual basis as the Lie algebra is

isomorphic to R, so we have ΩS
1
pMqrus. Note that if we have a basis tXiu with dual basis

tuiu, then we can write D “ 1b d´
ř

i u
i b ιXi , often shortened to D “ d´

ř

i u
iιXi . For

T “ S1, this simplifies even further to fixing X P s1 and dual element u, with D “ d´uιX .

3.3.2 Equivariant Cohomology at a Point

The equivariant cohomology for a 0-dimensional manifold tpu is quite simple, because

Ω0ptpuq – R and Ωkptpuq “ tu for k ą 0. Thus, ΩGptpuq “ Spg˚qG, and as D “ 0, every

form is equivariantly closed and none are equivariantly exact, meaning H˚
Gptpuq “ Spg˚qG

as well.

3.3.3 Equivariant Cohomology of a Free Group Action

Now, we know that if G is a compact, connected Lie group acting freely on M then M{G

is a smooth manifold as well. We would like to see if our definition of H‚
GpMq corresponds

with H‚pM{Gq, as would seem to be prudent.

Theorem 3.3.6. Let M have a free G-action, where G is a compact, connected Lie group.
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Then

H‚
d.R.pM{Gq – H‚pΩGpMq, Dq.

Proof. Note that π : M Ñ M{G is a principal bundle (Def. (4.2.4)), so π˚ : ΩpM{Gq Ñ

ΩpMq is injective [Tu11, Prob. 18.8]. Additionally, note that elements of π˚ΩpM{Gq are

necessarily G-invariant. We will now construct an isomorphism between H‚pΩGpMq, Dq and

H‚pΩpM{Gq, dq. First, consider the map i : ΩpM{Gq Ñ ΩGpMq defined by ipωq “ 1bpπ˚ωq.

We have that

pDipωqqpXq “ pDp1b π˚ωqqpXq

“ dπ˚ω ` ιXπ
˚ω

“ dπ˚ω ` π˚pιπ˚X#ωq

“ π˚dω

Dipωq “ 1b π˚dω “ ipdωq,

where we used that π˚X
# “ 0, as G acts trivially on M{G.

Thus, as i is compatible with addition and scalar multiplication as well, it is a cochain

homomorphism. Now, we need to show that it is also cohomological isomorphism, that is,

that every cohomology class in H‚pΩGpMq, Dq corresponds to one in H‚pM{Gq and vice

versa.

Let us consider the quotient complex ΩGpMq{ipΩpM{Gqq, i.e., the complex where

pΩGpMq{ipΩpM{Gqqq
k :“ pΩkGpMq{ipΩ

kpM{Gqqq.

We have that DpipΩkpM{Gqq Ď ipΩk`1pM{Gqq, as Dpipπ˚ϖqq “ ipπ˚pdϖqq, so D respects

this grading on ΩGpMq{ipBq, and as D2 “ 0, it forms a proper cochain complex. We then
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have the short exact sequence of cochain complexes

0 pΩpM{Gq, dq pΩGpMq, Dq
´

ΩGpMq

ipΩpM{Gqq
, D

¯

0.i p

This then induces a long exact sequence on the cohomology by the zig-zag lemma [Tu11,

Thm. 25.6]

¨ ¨ ¨ HkpB, dq HkpΩGpMq, Dq Hk
´

ΩGpMq

ipΩpM{Gqqq
, D

¯

¨ ¨ ¨ .i˚ p˚

Thus, to show that i˚ is an isomorphism, we need to show that the cohomology of

ΩGpMq{ipΩpM{Gqqq is 0, as then by definition,

HkpΩGpMq, Dq “ ker p˚ “ i˚pHkpΩpM{Gq, dqq,

which combined with the injectivity of i, produces an isomorphism on the cohomology.

To do this, first note that as π : M Ñ M{G is a principal bundle, we can construct a

connection Θ (Def. ( 4.2.5)). Further, we can construct a derivation K : Spg˚qbΩpMq such

that for all α P g˚, Kpαq “ ´α ˝Θ P Ω1pMq, and Kp1b ΩpMqq “ 0.

Then, if β “ uIβI P pS
kpg˚q b ΩpMqqG, we have that

Kpβq “
ÿ

iPI

KpuiquIztiuβI

“ ´
ÿ

iPI

uIztiupΘi ^ βIq P pS
k´1pg˚q b ΩpMqqG,
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where we are treating I as a multiset and subtracting tiu. The above holds, as

µ˚
g´1Θ

i “ µ˚
g´1pu

i ˝Θq “ ui ˝ pµ˚
g´1Θq

“ ui ˝ pAdg´1Θq “ pui ˝Adg´1q ˝Θ,

so

g ¨Kpβq “ ´
ÿ

iPI

´

uIztiu ˝Adg´1

¯

pppui ˝Adg´1q ˝Θiq ^ βIq

“ Kpg ¨ βq “ Kpβq.

Furthermore, if ω P ΩmG pMq, Kpωq P Ωm´1
G pMq, as ui gets sent to a 1-form, decreasing

degree by 1, and a pure differential form gets sent to 0, which also can be viewed as having

one less degree, as 0 has every degree.

Now, note that if α P g˚,

ppDK `KDqαqpXq “ pDKαqpXq

“ p´Dpα ˝ΘqqpXq

“ ´dpα ˝Θq ` ιXpα ˝Θq

“ αpXq ´ dpα ˝Θq,

as ιXpα ˝Θq “ α ˝ pιXΘq “ αpXq by definition. Thus, pDK `KDqα “ ppolydegαqα` r0s,

where polydegα refers to α’s polynomial degree, and rns is a term of polynomial degree n

or lower.

Assume that γ1, γ2 have monomial polynomial components of degrees k1 and k2 respec-

tively, and each individually satisfy pDK `KDqγ1 “ k1γ1 ` rk1 ´ 1s and pDK `KDqγ2 “
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k2γ2 ` rk2 ´ 1s. Then we have that

pDK `KDqpγ1 ^ γ2q “ ppDK `KDqγ1q ^ γ2 ` γ1 ^ pDK `KDqγ2

“ pk1γ1 ` rk1 ´ 1sq ^ γ2 ` γ1 ^ pk2γ2 ` rk2 ´ 1sq

“ pk1 ` k2qγ1 ^ γ2 ` rk1 ` k2 ´ 1s,

as pDK`KDq is a derivation. As polydegpγ1^γ2q “ k1`k2, this degree-lowering property

is held by γ1 ^ γ2 as well. Thus, by induction, we have that the degree-lowering property

holds for every equivariant differential form with monomial polynomial component.

This in turn implies that it holds for a non-monomial element of ΩkGpMq, as if its

polynomial degree was n, then all monomial elements γ of degree a less than n satisfy

pKD `DKqγ “ aγ ` ra´ 1s “ nγ ` pn´ aqγ ` ra´ 1s “ nγ ` rn´ 1s.

Suppose we have an element β P ΩkGpMq with maximum polynomial degree n such that

Dβ P ipΩpM{Gqq. Then, as we showed above,

pDK `KDqβ “ nβ ` γ “ nβ ` rn´ 1s.

Now, as Dβ P ipΩpM{Gqq, this means that

DKβ “ nβ ` γ

β “ DKβ ´ γ{n.

Note, that K preserves ΩGpMq, and that K respects its graded structure, as does D,

so ´γ{n P ΩkGpMq, Dp´γ{nq “ Dβ P ipΩpM{Gqq, and the maximum degree of ´γ{n,

n1, is less than n. Thus, one can show that DKp´γ{nq “ p´γ{nq ´ γ2{n1, with ´γ2{n1

being a k-cocycle of polynomial degree ď n1, and so on. Thus, eventually we reach that

β “ Dpstuffq ` 1 b ϖ, with ϖ P pΩkpMqqG such that Dpipϖqq P ipΩpM{Gqq. Note that if
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Dpipϖqq “ ipαq for some α P ΩpM{Gq, then

dϖ ´ ιXϖ “ α.

Thus, ιXϖ is completely X-invariant, which is only possible if ιXϖ “ 0 for all X P g.

Thus, ϖ is both G-invariant and horizontal, meaning it is basic, i.e. that ϖ P π˚ΩpM{Gq

[GS99, p. 26]. Thus, any element β P ΩGpMq is cohomologous to an element of ipΩpM{Gqq,

so ΩGpMq{ipBq has a trivial cohomology, proving that i gives a quasi-isomorphism.
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Chapter 4: ABBV Localization

Now, we come to the climax of this thesis: the application of the theory of equivariant coho-

mology to calculating integrals. Once we develop an appropriate definition for integration

of equivariant forms, we will go on to state a fascinating theorem that shows integrals of

equivariantly closed forms can be entirely characterized by integrals of their restrictions to

the fixed-point submanifold, a result evocative of the residue theorem of complex analysis.

4.1 Integrating Equivariant Forms

Naturally, one may begin to wonder if there is a way to integrate equivariant differential

forms analagous to how one may integrate a normal differential form. The answer is a

resounding “yes.”

Definition 4.1.1. Given α P ΩGpMq, we define the polynomial function
ş

M α : gÑ R by

ˆ
ż

M
α

˙

pXq ”

ż

M
αpXq.

In other words, given α “
ř

I u
IαI ,

ż

M
α “

ÿ

I

uI
ż

M
αI .

Notice that for this integral, as
ş

M αI “ 0 unless αI P ΩnpMq, we only need to care

about terms which have degree-n differential forms multiplied to polynomials. Furthermore,
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notice that

ˆ
ż

M
α

˙

pAdgpXqq “

ż

M
αpAdgpXqq

“

ż

M
µ˚
g´1pαpXqq

“

ż

M
αpXq,

where we used Thm. (2.3.12) to get to the last line. Thus,
ş

M α P Spg˚qG.

4.1.1 G-actions on submanifolds and boundaries

Here we note a few things about how group actions interact with submanifolds.

Definition 4.1.2 (G-invariant submanifold). A smooth submanifold S is G-invariant if for

all p P S, µgp P S.

Now, consider a smooth G-manifold M with boundary BM. Then, as µg is a diffeomor-

phism for all g P G, µgpBMq “ BM [Lee12, Prop. 2.18], so BM is a G-invariant submanifold,

meaning that the group action restricts to it.

4.1.2 Equivariant Stokes’ Theorem

We have an almost identical statement as the standard Stokes’ theorem for equivariant

forms.

Theorem 4.1.3. Let M be an oriented smooth n-dimensional G-manifold. Then, for

α P ΩGpMq such that αpXq has compact support for all X P g,

ż

M
Dα “

ż

BM
α (4.1)

Proof. Using the definition of equivariant integration, we realize that we can just consider
ş

M DαpXq and
ş

BM αpXq for arbitrary X P g. This in turn means that
ş

M Dα will only be
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nonzero if it has a term in pSpg˚q b Ωn´1pMqqG, and without loss of generality, we need

only consider elements of that subset. Using the definition of the Cartan differential, we

have that

ż

M
pDαpXqq “

ż

M
pdpαpXqq ´ ιXpαpXqqq

“

ż

M
dpαpXqq,

as αpXq P Ωn´1pMq, so ιXαpXq P Ωn´2pMq and thus integrates to 0 on M. Then, we can

use the standard Stokes’ theorem to say that

ˆ
ż

M
Dα

˙

pXq “

ż

M
DαpXq

“

ż

M
dpαpXqq

“

ż

BM
αpXq

“

ˆ
ż

BM
α

˙

pXq,

which, as it holds for all X P g, proves the assertion above.

4.2 ABBV Localization

Now, we finally get to stating some localization theorems. But first, a few more concepts

must be introduced.

4.2.1 The Normal Bundle

Normal bundles are a key ingredient of the statement of our localization theorems. In-

tuitively (and in the case of Riemannian manifolds, exactly), they capture the directions

orthogonal to a submanifold in the tangent space.
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Definition 4.2.1 (Restriction of the tangent bundle). Let S ĎM be a subset of a smooth

n-manifold M. Then we define TM |S to be \pPSTpM. If S is a smooth submanifold of M,

then TM |S is a smooth vector bundle [Lee12, Ex. 10.8].

LetN be a submanifold toM. Then there is a natural identification of TN as a subbundle

of TM |N . The normal bundle is the pointwise complement to that subbundle.

Definition 4.2.2 (Normal bundle). Let S Ď M be a smooth submanifold of n-manifold

M. Then the normal bundle to S NS is the bundle given by NpS ” TpM{TpS for all p P S.

NS is a smooth vector bundle.

4.2.2 Equivariantly Closed Extensions

Recall that an equivariant form α is equivariantly closed if Dα “ 0. Given some invariant

2n-form ω2n, we say that it has an equivariantly closed extension if one can construct an

equivariantly closed form α such that αp0q “ ω2n. In other words, for all X P g,

pDαqpXq “ dαpXq ´ ιXαpXq “ 0

dαpXq “ ιXαpXq.

Note that any equivariantly closed extension of ω2n has degree 2n as an equivariant form.

Let rαpXqsk denote the degree-k component of αpXq. Then,

drαpXqs2n ` drαpXqs2n´2 ` ¨ ¨ ¨ ` drαpXqs0 “ ιX rαpXqs2n ` ¨ ¨ ¨ ` ιX rαpXqs2.

For a form to be 0 each degree must be 0, so we have that

drαpXqs2pn´kq “ ιX rαpXqs2pn´k`2q

for k “ 0, 1, . . . , k. This clearly means that ω2n must be closed in order for it to admit an

equivariantly closed extension.
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Unfortunately, while there has been some investigation into which closed G-invariant

forms admit an equivariantly closed extension [Wu93], there does not exist, or at least has

not yet been found, a set of comprehensive necessary and/or sufficient conditions that is,

in my opinion, truly elegant.

G-manifolds for which every closed form admits an equivariantly closed extension are

called equivariantly formal.

4.2.3 The Equivariant Euler Class

The equivariant Euler class is the final ingredient we have to unpack in order to make

sense of our localization theorems. It is an equivariant generalization of the Euler class, a

characteristic class which intuitively captures the nontriviality of a vector bundle.

Definition 4.2.3 (Equivariant vector bundle). A vector bundle π : E Ñ M with fiber

V is G-equivariant if E, and M have G-actions µ and ν such that µgpEpq Ď Eνgp and

µg|Ep : Ep Ñ Eνgp is a linear map. In other words, if π : E Ñ M is an equivariant vector

bundle, π is G-equivariant, and µ restricts to linear maps on individual fibers.

Note that if S is a G-invariant submanifold, then NS is an equivariant vector bundle,

as one can restrict µg to S and consider the pushforward, thereby getting a map for p P S

pµgq˚ : TpM{TpS Ñ TµgpM{TµgpS.

We now introduce a number of concepts from the theory of principal bundles we will

make use of in our definition of the equivariant Euler class.

Definition 4.2.4 (Principal bundle). Given a Lie group G, a principal G-bundle π : P ÑM

is a smooth fiber bundle equipped with a smooth free right G-action Rg that restricts to a

transitive action on the fibers, i.e., for all p PM and g P G, Rg sends elements of π´1ptpuq

to π´1ptpuq, and R|π´1ptpuq : g Ñ Rg|π´1ptpuq is transitive for all p PM.

Note that this definition implies that π´1ptpuq is diffeomorphic to G for all p PM, i.e.,

P has fiber G. Thus, we can think of π´1ptpuq as G, just without a chosen identity.
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Definition 4.2.5 (Connection on a principal bundle). Let π : P Ñ M be a principal

G-bundle. Then, a connection on P is a g-valued one-form Θ P g b Ω1pP q satisfying the

following properties: R˚
gΘ “ Adg´1Θ, and for all X P g, ιX#Θ “ X.

Note that for a right-action, the fundamental vector field is defined in much the same

way as for a left-action, with pX#qp “ Rppq˚X, where Rppq : G Ñ M is defined by

Rppqpgq “ Rgppq.

Definition 4.2.6 (Curvature of a connection). Given a principal G-bundle π : P ÑM and

a connection Θ, the curvature of the connection, Ω P gb Ω2pP q is defined as

Ω :“ dΘ`
1

2
rΘ,Θs,

where given α, β P gb Ω1pP q, rα, βs is the g-valued 2-form defined by

rα, βspX,Y q “ rαpXq, βpY qs ´ rαpY q, βpXqs

for any vector fields X,Y.

Note that this definition just simplifies to stating that

ΩpX,Y q “ dΘpX,Y q ` rΘpXq,ΘpY qs.

A connection is called flat if has 0 curvature.

Theorem 4.2.7. A trivial principal G-bundle admits a flat connection.

Proof. Recall a trivial bundle P is isomorphic to M ˆ G, with π : M ˆ G Ñ M. Thus,

TP – TM ‘ TM. Let θ P g b Ω1pGq be the Maurer-Cartan form, that is, the uniqe g-

valued one form such that θgppℓgq˚Xq “ X. Let π2 : M ˆ G Ñ G be the projection onto

G. Then, consider Θ “ π˚
2θ. This is a connection on P. Now, consider the curvature Ω.
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Clearly, if X P TM ΩpX,Y q “ 0 for all Y P TP. But, we also know that if X,Y P TG

then ΩpX,Y q “ 0 [Tu20, Thm. 17.4]. Thus, we have that Ω is identically 0, so Θ is a flat

connection on P.

Theorem 4.2.8. If G is a compact, connected Lie group acting smoothly and equivariantly

on a vector bundle π : E Ñ M, then we can endow E with a G-invariant bundle metric,

i.e. a bundle metric such that for all X,Y P Ep, xX,Y yp “ xg ¨X, g ¨ Y yg¨p.

The specific principal bundle we will use is the following.

Definition 4.2.9 (The frame bundle). Given a real oriented rank-r vector bundle E over

M with bundle metric x¨, ¨y, the frame bundle is defined as

FpEq :“
ğ

pPM

FpEpq,

where FpEpq is the space of oriented orthonormal bases of TpM .

FpEq is a principal SOprq-bundle. Note that if E is a G-equivariant vector bundle

with left G-action, then FpEq also has a left G-action which commutes with its right

SOprq-action. Thus we can endow FpEq with a G-invariant connection by taking any

arbitrary connection θ on FpEq and letting Θ “
ş

Gpµ
˚
gθqdg, where we are integrating over

the normalized Haar measure on G. It is straightforward to show this is G-invariant and a

connection.

Definition 4.2.10 (The Pfaffian). Given a 2n-dimensional inner product space V, the

Pfaffian is a SOpV q-invariant polynomial map defined on sopV q so that for A “ pAijq P

sopV q, if ei is a dual basis for V, and

ω :“
ÿ

iăj

Aije
i ^ ej ,
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ω^n

n!
“ PfaffpAqe1 ^ e2 ^ ¨ ¨ ¨ ^ e2n

Explicitly, for a 2 ˆ 2 skew-symmetric matrix A “

¨

˚

˝

0 a

´a 0

˛

‹

‚

P sop2q, PfaffpAq “ a.

Additonally, it is interesting to note that PfaffpAq2 “ detA.

Finally, we are able to define the equivariant Euler class.

Definition 4.2.11 (Equivariant Euler class). Given a G-equivariant real rank-2k oriented

vector bundle E, and a G-invariant connection Θ on FpEq with respective curvature Ω, the

equivariant Euler class of E is an element of H2k
G pMq defined by

eGpEq :“

„

1

p2πqk
Pfaff pΩ` Lq

ȷ

,

where L : gÑ Ω0pMq is the map defined by LpXq “ ιXΘ.

Note that this definition has an opposite sign on the second argument inside the Pfaffian

than [BT01], as that paper uses opposite sign conventions for the fundamental vector field

of left-acting G-manifolds than we do. We will now state some facts about the equivariant

Euler class. Actually proving them is outside the scope of this thesis, but one can do it if

one uses an alternative definition of the equivariant Euler class based on the Borel model

of equivariant cohomology, wich [BT01] showed to be equivalent.

Theorem 4.2.12. The equivariant Euler class does not depend on choice of connection Θ,

nor on G-invariant bundle metric.

Theorem 4.2.13. The equivariant Euler class has the following properties

(a) If π1 : E Ñ M and π2 : F Ñ M are real, oriented, G-equivariant vector

bundles, then eGpE ‘ F q “ eGpEq ^ EGpF q.
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(b) If E and Ē are the same vector bundle with opposite orientations, then

eGpEq “ ´eGpĒq.

It is worth noting that eGpEq also gives an equivariantly closed extension of the standard

Euler class.

We now calculate the equivariant Euler class for a specific case we will make use of later.

Theorem 4.2.14. Suppose π : Lm Ñ tpu is a trivial rank-2 real S1-equivariant oriented

vector bundle, with µeitx “

¨

˚

˝

cosmt ´ sinmt

sinmt cosmt

˛

‹

‚

x in some properly-oriented basis. Then

eS
1
pLmq “ ´mu

2π , where u is dual to i, in that if X satisfies exppXq “ ei, upXq “ 1.

Proof. Notice that π : Lm Ñ tpu is a trivial vector bundle. Furthermore, notice that the

standard inner product on R2 is S1-invariant if we are in the basis specified in the theorem

statement. As the equivariant Euler class does not depend on choice of S1-invariant inner

product, let us choose that inner product. Thus, we can construct an orthonormal frame

bundle FpLmq. This is a S1-equivariant SOpLmq – SOp2q principal bundle, with a left

S1-action corresponding to

pv1, v2q Ñ pµgv1, µgv2q

and a right SOp2q action corresponding to the matrix multiplication of pv1v2q Ñ pv1 v2qA.

Note that pv1 v2q P SOp2q, and the matrix corresponding to the linear map µg is in SOp2q

as well by the S1-invariance of the inner product. As such, by the commutativity of SOp2q,

we can view µeit as acting by right-multiplication by elements of SOp2q as well.

Now let Θ be a flat S1-invariant connection on FpLmq (note that one must exist, as

SOp2q is abelian, and thus every connection is SOp2q invariant, and as described above, we

can view the S1 action as taking place within the SOp2q action). Then, we have that for

X P s1 and corresponding dual element u P ps1q˚ as described in the theorem statement,

eS
1
pLmq “ 1

2πPfaffpΩ ` uLXq. As Θ is flat, Ω “ 0, so we need only consider LX . Notice
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that as LX “ ιXΘ, LX P sop2q. Now, we need to characterise X# for X P s1. Note that X#

acts on f P C8pFpLmqq as

pX#fqppv1 v2qq “
d

dt

ˇ

ˇ

ˇ

0
fpµeitpv1 v2qq

“
d

dt

ˇ

ˇ

ˇ

0
f

¨

˚

˝

¨

˚

˝

cosmt ´ sinmt

sinmt cosmt

˛

‹

‚

pv1 v2q

˛

‹

‚

“
d

dt

ˇ

ˇ

ˇ

0
f

¨

˚

˝

pv1 v2q

¨

˚

˝

cosmt ´ sinmt

sinmt cosmt

˛

‹

‚

˛

‹

‚

“
d

dt

ˇ

ˇ

ˇ

0
f

¨

˚

˝

pv1 v2q exp

¨

˚

˝

0 ´mt

mt 0

˛

‹

‚

˛

‹

‚

“

¨

˚

˝

¨

˚

˝

0 ´m

m 0

˛

‹

‚

#

f

˛

‹

‚

ppv1 v2qq.

Thus, we see that LX “ ιXΘ “

¨

˚

˝

0 ´m

m 0

˛

‹

‚

, as for Y P sop2q, ΘpY #q “ Y by the definition

of a connection. Thus, we have

eS
1
pLmq “

1

2π
Pfaff

¨

˚

˝

u

¨

˚

˝

0 ´m

m 0

˛

‹

‚

˛

‹

‚

“ ´
um

2π

by definition of the Pfaffian of a 2ˆ 2 skew-symmetric matrix.

4.2.4 ABBV Localization

Finally, we are able to state the localization theorem in concrete terms.

Theorem 4.2.15 (Atiyah-Bott [AB84] and Berline–Vergne [BV82]). Let T be a torus, and
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M be a compact smooth T -manifold, with fixed-point manifold MT “ YiFi with connected

components tFiuI . For each Fi let ιFi : Fi ãÑ M be its inclusion map. Let ϕ be an

equivariantly closed form. Then,

ż

M
ϕ “

ÿ

iPI

ż

Fi

ι˚Fi
ϕ

eT pNFiq
,

where NFi is the normal bundle of f, and eT p¨q is the T -equivariant Euler class.

Note that for all t P T, µt|F “ idf , so for all Fi, ΩT pFiq “ Ωpfq b Spt˚q. Also note that

if MT consists of isolated points, NFi “ tTFiM Ñ Fiu is a trivial bundle, ΩT pFiq “ Spt˚q,

and the integral disappears, leaving just

ż

M
ϕ “

ÿ

iPI

ι˚Fi
ϕ

eT pTM |Fiq
.

One may ask how exactly you divide by an equivalence class of equivariant differential

forms, as is implied by dividing by the equivariant Euler class. The answer is that as

H˚
T pFiq “ Spt˚q bH˚pFiq, it is a Spt˚q-module, so we can perform an algebraic operation

called localization.

Localization is the algebraic process by which, given some f P Spg˚q, one constructs a

Rru1, u2, . . . , unsrf´1s-module Nf out of a Rru1, u2, . . . , uns-module N (we are switching to

lower-indexing of us for convenience). In this case, we choose f in the following way: each

equivariant Euler class can be written as

eT pNFiq “ α2k;i `

¨

˝

ÿ

tj1u

α
tj1u

2k´2;iuj1

˛

‚` ¨ ¨ ¨ `

¨

˝

ÿ

tj1,...,jku

α
tj1,...,jku

0;i uj1 ¨ ¨ ¨ujk

˛

‚.
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The last sum, as an element of H0pMq b Spg˚qG – R b Spg˚qG, is just a polynomial. Let

Pi be the last, purely polynomial, term of eT pNFiq. If Pi ‰ 0 for all i, which is the case for

the equivariant Euler class of a connected component of MT , which Fi is by definition we

can localise over
ś

i Pi. Note that Pi is invertible in this localization, with P´1
i “

ś

j‰i Pj
ś

j Pj

[GS99, Thm. 10.8.1]. Furthermore, we can invert eT pNFiq, letting eT pNFiq have a ring-

structure induced by the wedge product. To do this, we note that as

eT pNFiq “ Pi

¨

˝1`
α2k;i

Pi
` ¨ ¨ ¨ `

´

ř

tj1,j2,...,jk´1u α
tj1,j2,...,jk´1u

2;i uj1 ¨ ¨ ¨ujk´1

¯

Pi

˛

‚,

if we let

βi ” ´

¨

˝

α2k;i

Pi
` ¨ ¨ ¨ `

´

ř

tj1,j2,...,jk´1u α
tj1,j2,...,jk´1u

2;i uj1 ¨ ¨ ¨ujk´1

¯

Pi

˛

‚,

then eT pNFiq “ Pip1 ´ βiq. Now, we can invert this with the aid of power series, noting

that
1

eT pNFiq
“

1

Pi

1

1´ βi
“

1

Pi
p1` βi ` βi ^ βi ` ¨ ¨ ¨ ` β

^n
i ` ¨ ¨ ¨ q .

However, as Ω2npFiq “ 0 for n ě dimM ě dimFi, this series will terminate at pdimFiq
th,

and thus also nth order. It is simple to verify then that

eT pNFiq ^
1

eT pNFiq
“ 1,

where 1 is the cohomology class of the constant map p Ñ 1, the multiplicative identity in

the cohomology ring.

An element of H˚
T pFiq like ιFiϕ has a natural inclusion into H˚

T pFiq
ś

i Pi
just by dividing
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it through by p
ś

i Piq
0 “ 1. Thus, one of the assertions of the localization theorem above is

that the fractional parts of each of these terms cancel out in some way, leaving us with just

an element of Spt˚q.

The Localization Formula for an S1-Action with Isolated Fixed Points

In the case of T “ S1, if there are isolated fixed points, we can do quite a bit more. Notice

that for any p PMS1
, Np “ TpM.

Furthermore, we have the following fact.

Theorem 4.2.16. Suppose p is an isolated fixed point under an S1-action. Then, under

pµeiθq˚, TpM “ Lm1‘Lm2‘¨ ¨ ¨‘Lmn{2 , where Lmk is a 2-dimensional subspace acted upon

by pµgq˚ like so:

¨

˚

˝

cosmkθ ´ sinmkθ

sinmkθ cosmkθ

˛

‹

‚

.

We call the ms the exponents of the fixed point.

Corollary 4.2.16.1. If M is a connected S1-manifold with isolated fixed points, then M is

even-dimensional.

Thus let us let M be 2k-dimensional from now on. Then, the equivariant Euler class at

an isolated fixed point tpu becomes eS1
pLm1q ^ ¨ ¨ ¨ ^ eS

1
pLmkq, which is equal to

´

´
u

2π

¯k k
ź

j“1

mj .

Thus, our localization theorem becomes

Theorem 4.2.17. Let M be a 2n-dimensional compact S1-manifold, with isolated fixed

points p P F. Then, for an equivariantly closed S1-form ϕ, if ιp : tpu ãÑM is the inclusion
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map for p,
ż

M
ϕ “

ˆ

´
2π

u

˙n
ÿ

pPF

ι˚pϕ
śn
k“1mkppq

,

where tmkppqu are the exponents of p, and u is as defined in Thm. (4.2.14).

The Duistermaat-Heckman Theorem

One of the chief applications of this theorem is in the case where M is a 2n-dimensional

symplectic manifold, i.e., that M is equipped with a 2-form ω which is non-degenerate, i.e.

for all p PM, given any X P TpM, if ωpX,Y q “ 0 for all Y P TpM, then X “ 0. eT pNFiq is

invertible in the localization of the equivariant cohomology in the way described above, so

we can localize integrals.

We can consider µ : T Ñ AutTpM – GLpTpMq as a representation of T at the fixed

points, and as every finite-dimensional representation of a compact group is completely

reducible, we know it must decompose into a direct sum of irreducible representations. Fur-

thermore, by Schur’s Lemma, we know the only irreducible representations have

complex-dimension 1. Consider a one-complex-dimensional representation pρ, V q of T. Con-

sider H,G P t. eHeG “ eH`G by commutativity of T and thus ρpeH`Gq “ ρpeHqρpeGq. Note

that |ρpeGq| “ 1 as we can endow V with an inner product such that xρpeGqv, ρpeGqwy “

ρpeGq˚ρpeGqxv, wy “ xv, wy for all v, w P V. In other words, ρpeGq˚ρpeGq “ |ρpeGq|2 “ 1,

so |ρpeGq| “ 1. Thus, ρpeGq “ eifpexppGqq, where f : T Ñ R satisfies fpexppH ` Gqq “

fpexppHqq ` fpexppGqq. This defines a map α : t Ñ R by precomposition with the expo-

nential map. α is clearly linear, so α P t˚. As tÑ pµtq˚ decomposes into n such irreducible

representations, at each fixed point p we have n such weights tαi,puni“1.

Corollary 4.2.17.1 (Duistermaat-Heckman [DH82]). Let pM,ωq be a compact symplectic

2n-dimensional T -manifold with equivariant symplectic 2-form ω̃ “ ω ` ϕ. Furthermore,

suppose MT consists of isolated fixed points. Then,
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ˆ
ż

M
eω̃
˙

pXq “

ż

M
eϕpXqω

n

n!
“ p2πqn

ÿ

pPMT

epϕppqqpXq

ś

αi,ppXq
,

where αi,p P t˚ are the weights of µ˚.

There are a few things to note: While eω̃ is not an equivariant differential form, each

term in the power series expansion is, so we can still prove it with localization. Second,

ϕ P Ω0pMqT b S1pt˚q – C8pMq b t˚ is just a T -invariant map smooth map M Ñ t˚. We

call it the moment map. Finally, in the case that T “ S1, this can be rephrased in the

following way: if if is the moment map of ω, with f P C8pMq, (using that s1 – iR), then

we have that

ż

M
eitf

ωn

n!
“

ˆ

2π

t

˙n
ÿ

pPMS1

eiπsgnHf ppq{4eitfppq

d

detωp
detHf ppq

,

where Hf ppq is the hessian, and sgnHf ppq is the difference in the number of positive and

negative eigenvalues of Hf ppq, called its signature. In other words, the first-order stationary

phase approximation is exact.

It is also worth noting, as a historical aside, that the Duistermaat-Heckman formula was

not first introduced in the context of equivariant cohomology, but was rather an impetus

for Atiyah and Bott to produce their localization formula in the first place (I am unsure

as to what role it played in Berline and Vergne’s, as I cannot read French). It is thus a

testament to their success that the Duistermaat-Heckman formula follows so readily from

theirs.
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