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Abstract

EQUIVARIANT INTEGRATION AND LOCALIZATION
Connor Mooney, B.S.
George Mason University, 2022

Honors Thesis Director: Rebecca Goldin

This thesis endeavours to introduce the formalism of the Cartan model of equivariant
cohomology, with a focus towards its use in evaluating integrals via localization. It first
develops the traditional theory of de Rham cohomology and integration on smooth mani-
folds, before introducing the theory of equivariant differential forms, and finally stating the

Atiyah-Bott-Berline-Vergne localization formula and some of its corollaries.



Chapter 1: Introduction

Cohomological techniques have been unquestionably useful in the study of topological prop-
erties of manifolds. Given a cochain complex (X°®,d*®), i.e., a collection of R-modules
XM

, and a collection of module homomorphisms d* : X* — X**! such that d**! o

d* = 0. Thus, we have the sequence:

dk-1 dk+1 9 dk+2

k
Xk d Xk+l 47 xk+ S

and we can construct the cohomology H*(X*®,d*) := ker(d®)/im(d*~!). Note that

Note that we often define d : @2:—00 Xk - G_)Z:—oo X* by dz = d*z for x € X*.

One can construct a singular cohomology for a manifold M, where the cochains are duals
of smooth maps from simplices to M. The differential becomes the dual of the boundary
map, and thus we have a well-defined cohomology. It turns out though, that this is somewhat
more useful than homology; while the singular homology is a R-module, we can define the
cup product —: H¥(M) x H' (M) — H**'(M) under which H*(M) becomes a graded ring.
This extra algebraic structure makes cohomology notably easier to work with.

Thus, we have a graded ring topological invariant for every manifold. But how can we
account for additional structure on the manifold? For instance, what if there is a Lie group
G acting smoothly on M7 The singular cohomology doesn’t account for the G-action in
any way.

This is where equivariant cohomology comes in. Just as singular (and de Rham) coho-
mology is a contravariant functor from the category of smooth manifolds to that of graded
rings, G-equivariant cohomology is a contravariant functor from the category of smooth

G-manifolds to that of graded rings.



But the algebraic aspect of both standard and equivariant cohomology is not the main
focus of this thesis. Another remarkable boon of cohomology theory has been its connection
to differential geometry, specifically its connection to integration on manifolds. This thesis
was written firmly with the goal of expositing a remarkable group of related results called

’” which equate the integrals of equivariant cohomology classes to

“localization theorems,’
their restrictions to the fixed-point submanifolds. This can remarkably simplify the cal-
culation of integrals, in some cases reducing them to just sums, in a way evocative of the
residue theorem.

None of this thesis is original content. Everything here has been done before in multiple
ways. What I hope to bring that is unique with this thesis, however, is the organization
and level of detail in the derivations provided. Hopefully this will be accessible to those

with some basic smooth manifold theory under his or her belt, and will be written in such

a way that even the non-trivial steps are given enough time to follow readily.

Further Reading

Due to the fairly focused nature of this thesis, there are many aspects of equivariant co-
homology theory that I give short shrift, or even fully ignore. Most notably, we ignore
completely the Weil and Borel models for equivariant cohomology in favor of the (in this
author’s opinion) more sleek and elegant Cartan model, in exchange for restricting our at-
tention to compact and connected Lie groups. For more resources on these two models,
I recommend the main reference resources for this thesis, [Tu2(0, GS99]. For other treat-
ments of equivariant cohomology, I refer the reader to [BGV92,/Aud04]. For a physicist’s

perspective of the applications of this theory, I recommend [Ros21, Sza0(].



Chapter 2: de Rham Cohomology

The first task that lies ahead of us is to see how we can place standard, singular cohomology,
which we briefly described in the introduction, into a differential context. To do so, we
will construct a cochain complex out of differential forms, constructions used to formalize
integration on smooth manifolds.

In order to construct this cochain complex, we must first construct differential forms,
objects of independent mathematical interest. To put it concisely, differential forms are
alternating cotensor fields. But that clearly requires some unpacking. In this chapter, we
will begin by working with the algebra of alternating cotensors on an arbitrary vector space
V, before then defining differential forms and elucidating some of their properties. We then
show how differential forms are the natural objects one integrates on smooth manifolds,
and describe the differential-geometric generalization of Stokes’ theorem, before showing
how this factors into the construction of de Rham cohomology, which is in fact equivalent

to standard singular cohomology.

2.1 Alternating Cotensors and the Exterior Algebra

First, we must build the algebraic tools on vector spaces necessary to construct differential

forms on non-linear spaces (smooth manifolds).

Definition 2.1.1 (Alternating cotensors). Let V be an arbitrary n—dimensional vector

space over R. Then a : V¥ — R is an alternating k—cotensor on V if and only if:
(a) «is k—linear (« is a tensor)

(b) « gives 0 whenever two arguments are equal (« is alternating).



The second condition is equivalent to stating that the cotensor evaluates to 0 whenever
the arguments are not all linearly independent. Thus, it becomes clear that there are no

nontrivial k—cotensors for k > n.

Example 2.1.2. Let V = R? and f : R? x R? - R, defined by
fla,v) =u"Mv,

where

0 +A
-A 0

for some A\ € R. Then, f is an alternating 2—cotensor on V.
Definition 2.1.3. The set of all k—cotensors on V is denoted A*(V*).

Example 2.1.4. /\1(V*) is just the dual vector space, V*, consisting of linear maps from
V — R. Given a basis set {v;}?; for V, the basis of V* are the maps {w’}" ; defined such

that w'(v;) = 5;

Definition 2.1.5. The exterior algebra on V*, denoted A (V*), is defined as

N ),

0

/\V*) =

J:
where AY(V*) =R.

By definition, the exterior algebra has a graded structure.

The last thing we need to make it a proper algebra is a product.

Definition 2.1.6 (Exterior “wedge” product). Let a € A7(V*) and 8 € A"(V*). Then

(a A B):VITF SR
4



is defined by

(k+5)!
k14!

(Oé A 6)(7171, T 7wj+k‘) = Z sgn(a) (a (wa(1)> We(2)) """ awa(k))

UESk+j
B (wo(k-‘rl)) Wo(k+2)s " * vwa(j-‘rk)) )
First, we must show that this is a valid product, in that the wedge product of two
alternating cotensors is itself an alternating cotensor.
Theorem 2.1.7.

aAnpPe /\j+k(V*).

Proof. Tt is clear that a A § is (k + [)-linear. Thus, we need only show that o A 8 is 0
whenever two arguments are equal.

To show this, note that for any permutation that sends the two equal arguments to a
and b, the permutation that sends them to b and a will cancel eachother out in the sum.
As every permutation has another permutation that just switches a and b, the whole right

hand side should cancel and go to 0. O

Now, we will state a few theorems necessary to be able to algebraically manipulate these

objects.

Theorem 2.1.8. If a € A*(V*) and B € N (V*) then
anrB=(=DgAa.

Corollary 2.1.8.1. If a € A**™ (V*) for some k € N, then o A o = 0.
Note that this is not the case for even-degree alternating cotensors.

Theorem 2.1.9. The wedge product is associative and multilinear.



Theorem 2.1.10. Let {w'}"; be the basis set for V*. Then, the basis for AF(V#) is

(WP AW2 A AwWkiy,---ip € Z A [1,n], iy #dg # - # ik}

1

Example 2.1.11. Let n = 4 and a = w!' A w3 + w? A w*. Then

a/\az(wl/\w3+w2/\w4)/\(w1Aw3+w2/\w4)

1 1

= (W' A W) A (W A w?) + (W

AW A (WP A wh)

+ (W A wh) A (W A W)+ (W2 AW A (WP AW

1 3 3

=w A (Wi Aw) AW+l A (WP A W) AW

2 4 1 4

+ (W AWt AWt A W)+ WP A (WA WP AWt

—wlAwlAw3Aw3—w1Aw2/\w3Aw4

—wl/\w2/\w3/\w4—w2/\w2/\w4/\w4

2w Aw? AW AWt £ 0.

2.2 Differential Forms

Now, we will take the techniques developed in the previous section, and extend them for use
on smooth manifolds, simply put, manifolds that in some differentiable way locally “look
like” Euclidean space. We will not define them beyond that here, but if one wishes to see

an in-depth treatment of them, we direct the reader to [Leel2].

Definition 2.2.1 (Tangent and cotangent bundle). Let TM = vLpepIp,M, and T*M =

Lpem Ty M. We call TM the tangent bundle, and T*M the cotangent bundle.

These two bundles are specific cases of what is called a vector bundle, which is a space

E along with a projector 7w : E — M such that F is locally difeomorphic to M x V for some
6



vector space V =~ 7~ 1({p}), called its fiber. We will not go into much more explanation of

vector bundles, but note the following two statements about them in more generality.

Theorem 2.2.2 (Exterior power of a vector bundle). Given a smooth vector bundle T :

E — M with fiber V, there exists a smooth vector bundle N*(E) with fiber AN*(V).
Proof. See [Tul7, 20.6-7] for proof. O

Definition 2.2.3 (Smooth sections of a vector bundle). A smooth section of a vector bundle
E is a smooth map o : M — E such that m o o = idyy, i.e., m(c(p)) = p for all p e M. The

space of smooth sections of E is denoted I'(M, E).

Note that unlike more general fiber bundles, there will always exist at least one global
section on a vector bundle, the zero section oq : p — 0,, but not all vector bundles have a
nowhere-zero smooth section.

We call smooth sections on T M vector fields on M.

Definition 2.2.4 (Differential forms). A differential k-form w on a smooth manifold M

is an element of Q%(M) = I'(M, A\"(T*M)).

Note that as AY(T*M) = R, QO(M) = C®(M), and as differential forms inherit a
C*(M)-linear wedge product defined by wedging at each point, Q(M) is both a graded
ring and a C® (M )-module. In other words, differential forms are the alternating subspace
of the dual space (as C*(M) modules) to the tensor algebra of vector fields.

Now we will begin to describe the space of differential forms in more concrete details.

Theorem 2.2.5 (The exterior derivative). There exists a unique linear map d : Q¥(M) —
QFFL(M) satisfying the following prpperties;
(a) For a function (a 0-form) f: M — R, df : T*M — C*(M) is defined by
df(X) = X(f).

(b) d(da) = 0 for any form .
7



(c) If o is a k-form, then d(a A B) = da A B+ (—1)Fa A dB.
Proof. cf. [Leel2, Thm. 14.24] O

Theorem 2.2.6. Given a neighborhood U = M with smooth coordinates {x*: M — R},
the 1—forms {dazi}?zl form a smooth co-frame for T*M on U. In other words, given any

peU, {d$§,}?:1 forms a basis of T,y M.
Proof. cf. [Leel2, Ex. 11.13] and [Leel2, p. 281]. O

Theorem 2.2.7. Let M be a smooth n-manifold, and let (U, = (z',2% ---,2")) be a

coordinate chart. For any f € C*(M), in U,

O o
df:Z;axidm.

Proof. To see this, note first that on df(X) = X(f). Next, recall that U, { 0 }?:1 form

oz’
a frame for TM [Leel2, Ex. 8.10.a]. As {dz'}"; forms a coframe on U, we have that
df = > | gida’ for some {g;} € C®(U). Thus, as dz’ (%) = 0% as a function (i.e., the

constant function p — 5§), We have that

However, we also know that df (%) =-%(f) = %. Thus, we have proven our assertion.

O]



2.3 Integration and Stokes’ Theorem

Now we will begin to develop differential forms’ raison-d’étre : coordinate-free integration

on manifolds. But first, some preliminaries.

Definition 2.3.1 (Pushforwards and pullbacks). Let F' : M — N be a smooth map between
two smooth manifolds. Then Fy : TM — T'N is defined in the following way. Given v € T'M,

for any point p € N and function g € C*(N), Fyv satisfies

(F*U)F(p)(g) =vp(go F).

Next, we define F* : T* N — T*M to be the linear map that, given any pe M, w € T*N,
and ve T'M

(F*w)p(vp) = wrp) (Fsv) pp))-

It is straightforward to show that pushforwards are covariant and pullbacks are con-
travariant, i.e., (F o G)yx = Fy 0 Gy and (F o G)* = G* o F*. We can extend pullbacks to
F* . AB(T*N) — A¥(T*M) by asserting that F*(a A 8) = (F*a) A (F*j), and for when
feQON), F¥f = foFe QM)

On two unrelated (but later relevant) notes, we present a definition and a theorem.

Definition 2.3.2 (Velocity vectors of curves). Given a smooth curve v : R — M, we let

d
Y (1) R37T — (dtL) e TynM

be the velocity vector to v at t = 7.

Theorem 2.3.3. Given F: M — N and w € QF(N),

F*(dw) = d(F*w)



Proof. We will show this in the following way: First, we will show this is the case for 0-
forms, and 1-forms. Then, we will show how, as every k-form is a superposition of the
wedge product of k 1-forms, this follows for k-forms from the property holding on 1-forms.

First, to show that it holds for any O-form f, we note that df(X) = X(f), so

(F*(d))Y) = (df)(FeY)

= (BY)(f) =Y(foF)

d(E*N)(Y) = Y (F*f)

—Y(foF).

Now, to show this works for a one form, let’s consider an arbitrary one-form a = fdg,

where f,g e C*(N). It can be shown that every 1-form is a superposition of such forms, so

it suffices to prove the theorem for this case to prove it for all one forms.

d(F*a) = d((F*f)(F*dg))

= d(F*f) A (F*dg) + (F* f)d(F*dg)

= (F*df) ~ (F*dg) + (F* f)d(d(F"g))

= F*(df A dg)

= F*(da).

Now, we arrive at our inductive step. Suppose we have that for all k-forms w that d(F*w) =

F*(dw). Then, as every k + 1-form is the span of the wedge product of arbitrary 1-forms «

10



and k-forms c, we need only show that
d(F*(a n ) = d((F*a) A (F*m)))
= (A(F*a)) A (F*w) — (F*a) A (d(F*m))
= (F*da) A (F*w) — (F*a) A (F*dw)
= F*(da A @) — F*(a A dm)
=F*darw@—ando)

= F*(d(a A m)).

Thus, with £ = 1 as our base case, we use induction to show that all £ forms with k& > 1
satisfy the property, and as we’ve proven it for k£ = 0, we have all differential forms satisfy

it. O

Definition 2.3.4 (Orientation forms and orientable manifolds). Given an n-dimensional
manifold M, an orientation form is a n-form w that is at no point equivalent to the 0 map.
If such a form exists, then M is said to be an orientable manifold. We say that (M,w) is

an oriented manifold.

La-oo Aw™, and

A global, ordered coframe {w’}? ; induces a global orientation form w
a local ordered coframe (say on U € M) a local orientation form. Thus, by Thm. (R.2.6),
every local coordinate system induces a local orientation form. If these forms can be stitched

together in a smooth way, then M is orientable. Thus, if that can be done, it often becomes

the orientation form of the oriented manifold.

Definition 2.3.5 (Positively and negatively oriented forms). Given an oriented manifold

(M,w), any orientation form that can be written as fw for some smooth f : M — R (o

is positively (negatively)-oriented.

11



Now, we turn our attention to submanifolds. A manifold being orientable does not imply
its submanifolds are as well - just consider the fact that the Mobius band, the most infamous
non-orientable surface, is a submanifold of R?, which is evidently orientable. However, if the

submanifold is orientable, we can induce an orientation after making some extra choices.

Theorem 2.3.6 (Induced orientation of submanifolds). Given an oriented n-manifold

(M,w) and an orientable k-submanifold S < M, if we can select a collection of vector

fields Ny, -+, Np_p such that for all j,

Nj ¢ L*(TS),

then

[,*((Nl, oo ,Nn,k)gw)

is an orientation form on S, where _ is the interior multiplication Q"(M) x (I'(TM))"~* —
QF(M) defined by (Vi,...,Vo_g) —mw = w(Vi, ..., Vo_g, -, ...). Interior multiplication by

a vector field V- may also be denoted vy when confusion with an inclusion map is unlikely.

This is a good thing to know, but it isn’t all that relevant: for our purposes most
orientable submanifolds will just be given their own orientation form. However, there is
one place this will come in: the statement of Stokes’ theorem, which specifically requires us
to have an induced orientation for the boundary of a manifold (with boundary). In order
to make sense of this though, we first need to introduce the notion of an outward-pointing

vector field.

Definition 2.3.7 (Outward-pointing vectors and vector fields). Given a smooth

n-manifold with boundary M, and a point p € M a vector v € T, M is outward-pointing,

if for some (and thus all) boundary coordinate chart (U, ), the axin component of v is

negative. A vector field X on M points outward if for all p € M, X, points outward.

Now that we have defined such a vector field, we have everything we need built up in

12



order to induce an orientation on the boundary, as it is an (n — 1)-manifold and we have a

vector field.

Theorem 2.3.8 (The Stokes orientation). If M is a smooth, oriented n-manifold with
boundary, then 0M is an orientable manifold. Furthermore, given any vector fields X1, Xo
pointing out of OM, then X1 _w and Xa _w are positively oriented with respect to eachother.

This equivalence class of orientations is called the Stokes’ Orientation.

Proof. cf. [Leel2, Prop. 15.24] O

Example 2.3.9. Let D be the closed unit disk in R? defined by {(z,y) € R? : 2% +y% < 1}.
Then, notice that 0D = {(x,y) € R? : 2% + y? = 1}. Let 1op : D — D be the inclusion of
0D into D. Notice an orientation on R? induces one on D by restriction. Let w := dz A dy

be our orientation on R?. Then, as N := x% + ya—ay is an outward-pointing vector field,

N N 0 0
(N _de ady) =1 <<xafn+yay>gdx/\dy)

=" <<:r£c> _dz Ady+ <y§y> ~dx A dy)

=" (zdy — ydz),

where we used that X _ (a A B) = (X _a) A B+ (—1)4% A (X _3). This is our orientation

form on 0D.

Definition 2.3.10 (Integrating differential forms on R, see [Tull, Def. 23.8] and [Leel2, p.
402)). Let {z'}7_; be a coordinate system for R", inducing the orientation form dz! A --- A
dz", and w be an n-form on open subset U = R™. This form is expressible as f(x)dz! A

- A da™ for some smooth function f : R™ — R. The integral of w over subset A — U is

defined as
f W=J fx)dat A Adx"EJ Fx)dz! - - da™
A A 1

13



if the rightmost (Riemann) integral exists.
In other words, simply “erase the wedges,” as Lee puts it.

Definition 2.3.11 (Integration of differential forms on one chart, cf. [Leel2, p. 404], [Tull,
eq. 23.7]). Suppose U < M is an open neighborhood of an oriented n-manifold M, and U
contains the compact support of an n-form w. Further suppose that ¢ : U — ¢(U) < R"
is the coordinate diffeomorphism (i.e., each of its components is a coordinate function x?),

which induces an orientation on ¢(U). Then let the integral of w over M be defined as

Ju= Lt

Now, one of the things about smooth manifolds is that they are only locally diffeomorphic
to R™, so many n-forms will have their support lie in more than one so-called “coordinate
chart” By definition, a smooth manifold has an atlas, with finite open cover {U;}; and
coordinate diffeomorphisms {;}; such that the so-called transition maps goiogojfl are smooth
for all 4 and j such that U; n U; # 0. There may be differential forms with support on
multiple of the U;. To extend Def. (), we introduce the concept of a partition of unity,
a collection of smooth functions {e;}; such that ), e; = 1, but each ¢; is only nonzero on
U;. It is known that for a smooth manifold such a partition must exist [Leel2, Thm. 2.23].
Thus, for any n-form w with compact support on M, we can decompose it into ), g;w, and,

each term in the sum having compact support on only one U;, then say that

| o= ZJ o)

It is known that, while this definition is built upon choices of open covers, coordinates,
and partitions of unity, it does not depend on any of those choices [Leel2, Prop. 16.4-5].

It is also worth noting that if .S is a smooth k-submanifold of M with inclusion tg : S —

14



M, and w € QF(M), then we often slightly abuse notation, saying that

JwEfogw.
S S

Another useful property about integrating differential forms is that they are invariant under

pullbacks, which in turn gives us that differential forms are in fact coordinate-independent.

Theorem 2.3.12. Let f : U S M — V € N be an orientation-preserving diffeomorphism

between open subsets of orientable manifolds M and N, and w € Q(N). Then,

J ffw = J w.
M=f-1(N) N

Proof. Assume without loss of generality that U and V are coordinate charts of M and
N respectively (if they are not, we can intersect them with the charts, and construct a
partition of unity, etc. and the following argument will still work).

Then, if o : U — p(U) € R" and ¢ : V — (V) < R™ are coordinate charts, we have

that our assertion is equivalent to:

Now, as we are working in coordinate charts, and as n-forms are the only forms with

non-vanishing integrals, we can write (¢~ 1)*w = g(x)dz! A --- A dz™ and (f o p™1)*w =

h(x)dz' A --- A dz™, where they are related by
(Yo fop N¥gdat A--- Ada" = hdz! A--- A da"
(gor)d(zlok) A---Ad(@"or) = hdzt A --- A dz".

15



where we’ve written that k = ¢ o f o ¢~! for brevity. Now, expand dx’ out in coordinates

to get that

1 . n .
(gok) (Z ZZz‘dxl) A A ( ?‘;idx’) — (gok)det Jdz! A --- A dz",

where Jg = (?jni is the Jacobian of k. Thus, we have that our assertion is equivalent to

J go/ﬁ;detdel-”dxn:J gdat - dz™,
o(U) (V)

which is true by the standard change-of-variables formula in multivariable calculus. O

Example 2.3.13 (Line integrals). Let R? be our ambient manifold, let w = f(z,y)dz +

g(x,y)dy, and let 7 : [a,b] — R? be a C® curve. Then we have that

= o
k) Jlat]

f[ 070000 + g(0u(0) (0)).

We are playing fast and loose with the fact that charts are supposed to be over open sets
here with the knowledge that the boundary points will in the end comprise part of a set of

measure zero, and as such will not matter.

Now, we evaluate dv* and dy¥ with Thm. () and get that d+* = %dt and dy¥ =

dditydta so we get the integral equal to

J[ b](f(vz(t),vy(t))(v‘””)’(t) +9(y" (1), 7 () (vY) (1)) dt,

which has taken the standard form of a line integral seen in calculus III for a vector field

f(z,y)x+g(x,y)y. Note that we are using an orientation given by the curve in the direction

16



of increasing ¢ in this calculation. In practice, when we give an orientable submanifold on

which we wish to integrate a form, it will come with its own orientation.

Theorem 2.3.14 (Stokes’ theorem). Given an orientable smooth n-manifold M with bound-

ary OM, and a differential (n — 1)-form w with compact support on M,

J dwzf w.
M oM

Example 2.3.15 (The divergence theorem). Let V < R? be a 3-submanifold with closed
boundary S = 0V. Let F(z,y, 2) = Fy(x,y,2)Xx + Fy(z,y,2)y + F.(x,y, )z be a (Calculus

II-style) vector field. Let {U;,@; = (si,t;)} be a coordinate atlas for S onto ¢;(U;) < R?,

and €; a compatible partition of unity over S, & = ¢;0.5;, S; = cpi_l, and €, = ¢; o iy

restricted to where the map is well defined. Finally, let
(f7 g)(:p,y) = fzgy - fygac
and let ¢ : S — R3. be the inclusion. Let r; = 10 S; = (r%,r?,r7). Then,

17717

dpas B =3 || dsdtcil(ays (920 (Fr o) + () ()2 ) (B o)

S i (Ui)

+ ((Ti)m (ri)y)(siati)(FZ © rl))

= 2 J ~i(((ri)y7 (ri)z)(si,ti) (Fz S I‘i) + ((Ti)m (Ti)w)(si,ti)(Fy © ri)
U,

+ ((ri)as (13)y) (s5,4) (Fz 0 13))dsi A dt;
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We have that ((ri)z, (7:)y) (s, t,)dsi A dti = (r3)*(dz A dy), which we can see by the fact that
ri(dz A dy) = (rfdz) A (r]dy)

d(riz) A d(riy)

— AT Y
=dr{ Adr;

or? or? ory or?
= (aSZ ds; + atldtz) A <asZ ds; + dtl>

ot;
orror?  orY or®
= (St 5E — =L =1 ) ds; A dts.
<681 ati 0si atl> i A

Similar analysis holds for the pullbacks of all the other coframe 2-forms.
Thus,

#ds -F = Z Jj Ei((Fporyri(dy A dz) + (F, or;)r}(dz A dz) + (F, or;)r} (dz A dy))
S ‘ i(Us)
— Z ff Ei((Fyporyri(dy A dz) + (F, ory)r}(dz A dz) + (F, or;)r] (dz A dy))
" i(Us)

=ZJ]@W&@A®+&@AM+BMA@)
" i)

Thus, if we let ¢ = Fpdy A dz + Fy,dz A dox + F.dx A dy, then we can write that
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#dSF:Z ﬂ gl
s " iU
> ] rrew
' pi(Us)

-3 [] sterew
: i (Us)

SN | RCRNGRIET)
" ei(U:)

[
- J;?V—S QIZ)

Assuming ¢ has compact support, then we can use Stokes’ theorem to rewrite this

integral as

[+

Now, to calculate di, we use the definition of the exterior derivative to see that
dyp = d(Fpdy A dz + Fydz A dz + F.dz A dy)

=dF, ndy Adz+dFy Adz Ade +dF, Ade Ady

- <an 0F,  OF;

- dz Ady Ad
8x+8y 6,2) T Ady Adz

= (divF)dz A dy A dz.
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Now, evaluating this integral, we get

JV Ay = L(divF)dx Ady A dz
_ J J J (divF)dV,
1%

establishing the divergence theorem as a special case of Stokes’ theorem.

2.4 de Rham Cohomology

The key insight that allows us to construct a form of cohomology out of differential forms
is that we have a sequence of spaces QF(M), with a mapping d : QF(M) — QFF1(M) which
satisfies d°? = 0. In other words, we have an ideal candidate for a cochain complex in the

pair ({QF(M)}* d), (where Q¥(M) = {0} for k > n,n < 0). Thus, in order to construct

1=—00"

a cohomology, we need only define our coboundaries and cocycles.

Definition 2.4.1 (Closed forms). A closed differential form « is one such that
da = 0.

Denote the set of closed forms of degree k as Z*(M).

Definition 2.4.2 (Exact forms). An exact differential form « is one such that there exists

a differential form [ satisfying

a=dg.
Denote the set of exact forms of degree k as B*(M).
Notice that, as expected, d°> = 0, meaning B*(M) < Z¥(M).

Definition 2.4.3 (The de Rham cohomology). Let the £** de Rham cohomology group be
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defined as
Hfg (M) = Z"(M)/B*(M).

It turns out that Stokes’ theorem expresses the duality between differential forms and
singular chain complexes in such a way that suggests that this de Rham cohomology is dual

to the singular homology. To see this, note that Stokes’ theorem essentially says that
(¢,dw) = (Oc,w)

when we define a bilinear form (-,-) : Cx(M) x Q¥(M) by (c,w) = §, w. Now, we will see

that this bilinear form induces a pairing between H,.(M) and H]  (M).

Theorem 2.4.4 (The de Rham theorem). Let H,(M;R) be the singular homology of M

with coefficients in R, as defined in [Leell, p. 343] and [Hat0Q, p. 153]. Then, the map
A Hy(M;R) x H’ (M) — R

defined by A([c], [w]) = (c,w) = § w is bilinear, well-defined, and non-degenerate. In other

words, HY z (M) = (H,(M))*.

Proof. T will only show the first two claims to be true. To see the last proved, cf. [Leel2, Ch.

18]. To prove the first, notice that (-, -) is bilinear and thus, if A is well-defined, it will inherit
this structure. Thus, we must only show that for any c € Zy(M), b € By,(M) and w € Z*(M)

and 8 € B¥(M), that

Equivalently, we must show that

|| 3oana [ 5-0
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We can show the first two to be true, by noticing that b € By(M) means that it is equal to

dd for some d € Cyy1(M). Thus, we have by Stokes’ theorem, that for any o € Z¥(M),

J azfdazj():(),
od d d

by definition of Z¥(M). As B¥(M) < Z*(M), this means that

f w = J 6 =0.
b b
Now, we will consider

J»

As B e B¥(M), B = da for some o € Q¥~1(M). Thus, by Stokes’ theorem, we have that

fdazf azfazo,
c oc 0

as c€ Zy(M), so dc = 0. O

Example 2.4.5 (de Rham cohomology of a circle). We can view S* as {z € C : |z| = 1}.
Let cis : R — S! be the map cis(z) = €. cis is a smooth covering map, meaning that it is
also a smooth surjective submersion [Leel2, Prop. 4.33]. This means that cis* is injective

[Tull, Prob. 18.8].

Clearly, as dim S' = 1, Q%(S') = 0 for k > 1. As such, it is obvious that every 1-form is

closed, and that there are no exact O-forms. But which forms are exact?
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If B e Q(SY), is exact, then 8 = df for f e C®(S!). Then,

Joo=Jaos
“J

- | r=o
0

Now, suppose that 5 € Q'(S') and {4, # = 0. Note that

Jo = Ligoun?
St cis([0,27])
:J cis* 3.
[0,27]

Let f(t) := SV(I) [ for some 3 such that Ssl B =0, where v : I — S! is an arbitrary curve

in S between 1 and cis(t). Then, up to a reparametrization, v = cis, with x € [0, + 27n],
neZ. As §¢ B =0, this is a well-defined map.

Let cis*8 = g(t)dt. Then, f(t) = S0 8 = S 6i5™8 = So.q9(0)dt = fg(t)di. By
the fundamental theorem of calculus, f/(t) = g(t), so clearly, df = g(t)dt. Now, we know
that g(t)dt = cis*B, so df = cis*B. Define f(p) : S* — R by f(p) = f(cis~'(p)). Clearly
by the analysis above f(p) is well defined (and smooth). Furthermore f = cis*f. Thus,
d(cis*f) = cis*f3, so cis* (df) = cis* . As cis* is injective, df = 8, meaning 3 is exact.

Now, we see that the map 8 — Ssl B descends into a well-defined map H'(S') — R.

Furthermore, the map is injective, because if any two forms S, S have the same integral,

then (51 — B2 integrates to 0, meaning it is exact, meaning [1] = [B2]. But does there exist
any non-zero cohomology class in H'(S')? To answer in the affirmative, we must provide a

closed one-form on S! with nonzero integral.
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Let a = PZQS%;W e Q2(R?), and ¢ : S' < R?\{0} be the inclusion of the circle into

the punctured plane defined by 1z = (Rez,Imz). Clearly, dao = 0 on the punctured plane.

Now consider ¢*«. This is closed on S! as well. We have that

f o= J P (_y)dx + wdy
g1 S1 .’E2 + y2

_ f cis** ((_y)dx + xdy)
[0,27] x? 4 y?

_J ((—yOLOCiS)d(CUOLOCiS)+$OLOCiSd<yOLOCiS))
[0,27]

xorocis? + youocis?

B J —sintdcost + costdsint
[0,27]

cos?t + sin® ¢
_ f dt
[0,27]

=27

Thus, we have a form ¢*a which is closed, inexact, and with nonzero integral on S'. That
means that Ssl is a surjective map to the reals, because for any x € R, 5-¢*«a integrates to
x. Thus, we have a one-to-one correspondence between H!(S') and R.

Now, let’s consider which O-forms are closed. We know that constant functions are
closed 0-forms, but are they the only closed 0-forms? Suppose f € C®(S!) and df = 0.
Then cis*df = 0 as well. We then have that d(cis* f) = 0, meaning that X (f o cis) = 0 for

all X € TR. As all X € TR can be written as g%, we then have that for all g € C*(R),

for all ¢, g(t)% f(cis(t))]: = 0, which is clearly only possible if f o cis is a constant map,
which in turn means f must be constant, as cis satisfies cis(t + §) # cis(¢) if § < 2w. Thus,

H(S') = {constant functions}/{} = {constant functions} = R.
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Chapter 3: Equivariant Cohomology

Often one has to deal with spaces which have some sort of symmetry. These symmetries are
usually encoded in terms of group actions. These group actions give us more information
about our manifold, which we would like to be able to take into account when we analyze
the cohomology of our space, but the standard de Rham cohomology does not do so. As
such, we will have to introduce a new form of cohomology, equivariant cohomology, which
works in the category of G-manifolds rather than merely smooth manifolds.

We begin this chapter by introducing the necessary theory of Lie groups and Lie algebras,
as well as group actions, before finally giving a solid definition of the relevant model of

equivariant cohomology we will be using.

3.1 Lie Groups and Lie Algebras

Lie groups are the natural choice of object to describe continuous symmetries. They appear

all over in both physics and math, and will be the only type of group we will be considering.

Definition 3.1.1 (Lie group). Let G be a smooth manifold, and m : G x G — G and
1 : G — G smooth maps. Let G be a group with multiplication m and inversion i. Then

(G,m,1) is a Lie group.

We also will make use of the two functions of left and right multiplication, £4(-) = m(g, -)

and rg = m(-,g).

Definition 3.1.2 (Lie algebra). A vector space V endowed with a bilinear product [-,-] :

V xV — V is a Lie algebra if

(a) [z,x] =0 forall z eV,
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(b) [z, [y, 2]l + [y, [z, 2]] + [2, [z, y]] =0 for all z,y,z € V.
If these properties are satisfied, [, -] is called the Lie bracket, or the commutator.

It follows from this definition that the Lie bracket is anticommutative.
Now, one may wonder why Lie algebras and Lie groups are related. After all, they
seem to have unconnected definitions. However, that separation is only skin-deep; every

Lie group gives rise to a corresponding Lie algebra.

Definition 3.1.3 (Lie algebra of a Lie group). The Lie algebra g of a Lie group G is defined
as g = T.G, where e is G’s identity. g is endowed with the Lie bracket [, ] : T.G x T.G —

T.G defined by

[X.Y](f) = X(Y(f)) = Y(X(f),

where given Z € T,G, Z is the vector field defined by Z, = (¢,).Z.
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We see that [X,Y] € T.(G) by considering

[X.Y](f9) = X(Y(f9)) — Y(X(fg))

meaning that it is a derivation at e. We used that (Z(f))(e) = (Ze(f)) = Z(f) to get to
the penultimate equality. It is a straightforward, if somewhat tedious, calculation to show
that this Lie bracket satisfies the Jacobi identity [Leel2, Prop. 8.28].

Now, as g is a vector space, and G is a group, one may consider the representations of

G on g. Luckily for us, there is one natural choice.

Definition 3.1.4 (The adjoint representation). Let c4(h) = £yr;'(h) = ghg™" be the

conjugation map. Then we have that Ady = (¢g)«|1.¢ : TeG — T.G, the adjoint repre-

sentation, is the restriction of the pushforward of the conjugation to the Lie algebra.
This is referred to as a representation because Ad : ¢ — Ad, is a homomorphism from

G to Autg, or in other words, a representation of G.
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There is also a map from g — G, called the exponential map, which can be quite useful.

Definition 3.1.5 (The exponential map). Let vx : R — G be the unique (we will not prove

this) smooth homomorphism such that +% (0) = X. Then exponential map exp : g — G is

defined as exp(X) = vx(1). exp(X) can also be written as eX.

Theorem 3.1.6.

7x () = exp(tX).

Proof. To show that exp(tX) is a smooth homomorphism, we consider the map A\ : 7 —
~vx (t7). Clearly, this is a smooth homomorphism. Now, by the fact that the pushforward of

a scalar multiplication uf : x — tx is in turn defined by pt (0z]s,) = t0z|(tz0), and that push-

forwards are linear maps, we see that X (0) = A\ (0-)0) = (7x)+ (1 (0r]0) = (vx)«(t0r|0) =

t(vx)«(0r|o) = tX.

Thus, we see that A(7) = vx(¢7) = yx(7), which in turn means that exp(tX) =

Yex (1) = yx (¢).

Theorem 3.1.7. Given some map F : G — M, we have that

Fi(X) = (Foyx)'(0).

We also have that X(f) = (f o vx)'(0), with the derivative taken as a standard derivative

rather than a velocity vector in the latter case.

Proof. This follows from recalling that a curve’s velocity at ¢ is the pushforward of d;.
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Then, we see that
(Fovx)'(0) = Fx o (7x)«(0o)

= Fi((7x)#(9tlo))

To show that X (f) = (fovx)'(0), taken in the sense of standard limit-based derivatives

rather than pushforwards, notice that

= ((7x)# (9tlt=0))(f)

= Otli=of(x () = (f o 7x)'(0).

O]

This proof in fact holds more generally. Given a map F' : M — N, and any curve

Iy :R— M with V € T, ()M such that I',(0) = V, Fi(V) = (F o I'y)'(0). Furthermore,

if (g-vx)(t) = g-yx(t), we have that X,(f) = (f o (g-7x))'(0), as X, = (¢,)+X, s0
Xg(f) = X(foly)
= (folyox)'(0)

= (fo(g-7x))(0),

once again as actual derivatives, not pushforwards. Thus, X (f) € C®(G) sends g € M to
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(fo(g-7x))(0).

This allows us to rewrite the Lie bracket in terms of a derivative of a pushforward.
Theorem 3.1.8. Given X,Y € g,

(ro-ex)s(lux)sY — Y

Y] = i P
d ~
= E tzo((reftx )*Y)e.

Proof. We begin with the definition of the Lie bracket of g:

[X,Y]=XoY —YoX.

Acting on some function f, that gives us

[X,Y](f) = X(Y(f)) = Y(X(f))

2

- %(f(w( ) vx (7)) = flyx(2) 'VY(T))L:r:O
o2 ” X X Y

() e )|

Now let’s consider
d . ) -
<dt‘t=o((re_tx)*y)e> ()= &L:oyetx(f O Te-tx)

= S (om0 (@ )/ )]

dt t=0

(92

_ %(f(et){ i eTY X e—tX))’

t:‘r:(].

Let F(t1,7,t2) = f(ehX - e™ . e7%2X). By the chain rule, %F(t, T,t)|t=0 = a—‘le(O,T, 0) +
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a%F(O, 7,0). Thus, we have that
2

where we relabeled —t as t to get to the last line. Thus, as the two vectors have equal

action on any functions, they themselves in turn must be equal. O

We also have that the exponential map is a natural transformation between Lie algebras

and Lie groups.

Lemma 3.1.9. If f : G —> H is a smooth homomorphism of Lie groups, then fi :g — b

satisfies f(exp(X)) = exp(f«(X)) for all X € g.

Proof. Note that f(exp(X)) = f(yx(1)). Consider f(vx(t)). Clearly foyx : R — H is
a smooth homomorphism. Furthermore, (f o vx) (0) = (f o vx)«(0tlo) = f«(X), so it

is the unique smooth homomorphism vz, x : R — N such that v} (0) = f.X. Thus,

exp(feX) = v, x(1) = f(7x (1)) = f(exp(X)). -

Corollary 3.1.9.1. Forallge G, X € g,

exp(Ady(X)) = gexp(X)g~".

We are now equipped to show that the derivative of the adjoint representation is the

commutator.

Theorem 3.1.10. Let Ad : G — Aut(g) be the function defined by Ad(g) = Ad, Then

Ad, : g — TrAut(g) = End(g) satisfies (Ad«(X))(Y) = [X,Y].
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We first prove a technical lemma that helps simplify handling the pushforwards of maps
to Aut(g).

Lemma 3.1.11. Let F : G — Aut(g) be a smooth Lie group homomorphism, and let
F[Y]: G — g be defined by (F[Y])(9) = (F(g))(Y). Then, we have that (Fx(X))(Y) =

(F[Y])«(X), with Fy : g — End(g) and (F[Y])«:9 — g.
Proof.

Fo(X) = ip(et’f)‘

de t=0

LN = ()] ) )

d

= S(FEX)(V)li=o.

where, as Aut(g) and g are finite dimensional vector spaces and F' is smooth, we can treat
the right hand sides as actual derivatives.

Now, consider ((F[Y])«(X)). We have that

(FIYD)«(X) = S FIV](e)|

de t=0

d

— S(F()(Y))

de t=0

= (F(X))(Y).

O

Proof of Thm. ) First, we need to explain why T'Aut(g) ~ End(g). As Aut(g) =
{M € End(g) : det M # 0}, and we know that the determinant is continuous (as it is a
polynomial function of matrix entries, which are linear functions End(g) — R) by the fact
that the preimage of an open set under a continuous map is open, we see that Aut(g) is

an open submanifold of End(g). As we know that given an open submanifold U € M that
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T,U = T,M, we see that Tr(Aut(g)) = T7(End(g)) =~ End(g), as the tangent space to a

finite-dimensional vector space V is isomorphic to V.

Now, to evaluate the pushforward of Ad at the identity, we make use of Lemma ()

to say that, if A[Y]: G — g is defined by A[Y](g) = Ady(Y)

(Ad«(X))(Y) = (A[Y])«(X)

= S Adax (V)

de t=0

d
= — (Eetx O Te—tx)* Y‘

dt t=0

Now, as this is a proper derivative, and thus an element of g, we can consider its action on

a function f € C*(G). We have that

— i (((getx o ’r‘e—tX)* Y)(f)) ‘

dt t=0

d
= 7Y(f o getX o ’l“eftx)’

Cdt t=0

62 tX 1Y tX
A ))

t:'r:07

which, as we’ve shown above in Thm. () is just [X,Y](f). Thus, we have that

(Ad«(X))(Y) =[X,Y], so Ady : g — End(g) sends X — [X,]. O

Now, we come to a remarkable result relating three of the most important operations

in Lie groups and Lie algebras: the exponential map, the Lie bracket, and the adjoint

representation.
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Theorem 3.1.12. Given X € g,
Adex () = Exp([X,-]),

where Exp : End(g) — Aut(g) is defined by

0 ok
Exp(f) = )] (fk?! :

k=0

Proof. Note that End(g) is a Lie algebra with bracket [f, g] = fog— go f. In this context,
it is fairly straightforward to show that Exp is defined for all of End(g) [Hall5, Prop 2.1],
and is the exponential map for this Lie algebra, mapping it into Aut(g), the Lie group in
this context [Hall5, Prop 2.3].

Thus, we see that, as Ad(X) = [X, -] by Thm. (), the result is a straighforward

application of Lemma () O

Note that while we haven’t defined a norm for g or End(g), if G (and thus g and End(g)
is finite dimensional, which it is for the concerns of this paper, all norms are equivalent, so

convergence makes sense.
Corollary 3.1.12.1. Given X,Y € g such that [X,Y] =0, then Ad.x(Y) =Y.

Finally, note once again that the Lie bracket is intrinsically tied up with commutativity,

in that the Lie algebra of an abelian Lie group has trivial bracket.
Theorem 3.1.13. If G is an Abelian Lie group, then for any X,Y € g, [X,Y] = 0.

Proof. Notice that if G'is Abelian, ¢, = idg for all g € G. Thus, the differential, by which
the adjoint representation is defined, must be the constant map which takes g — idy. Thus,
the pushforward of Ad must be the zero map. Thus, as Ad«(X) = [X, ], we see that

[X,Y] =0 for all X,Y €g. O
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3.2 Group Actions

Lie groups and Lie algebras are a fascinating subject in their own right, but for our purposes,
we care about them insofar as they are related to symmetries, and symmetries are properties
of a space, that is, a smooth manifold. Thus, we need to have a way to relate them to

manifolds. This is where the language of group actions comes in.

Definition 3.2.1 (Group actions, cf. [Leel2],[Tu20]). Let G be a group, and M a smooth
manifold. A left group action is a homomorphism p : G — Diff(M), that is, a map u
that sends g to pu(g) : M — M in such a way that u(g192) = u(g1) o pu(g2). We will also
denote 1(g) by pg or, given p € M, by g - p. A right group action is an antihomomorphism
w: G — Diff (M), i.e., a map such that p(g1) o u(g2) = p(geg1). Right group actions may

also be denoted by p, or, given pe M, by p-g

One often calls a smooth manifold M with a group action p : G — Diff(M) a smooth
G-manifold.
We will work with left actions mostly for the rest of this thesis except when discussing

principal bundles, for which right actions are more commonly used. Note that a left action
I can be made into a right action by letting r(g) = I(g~'), so that r(gh) = I((gh)™!) =

I(htg )y =1(h 1) ol(gt) = r(h) or(g), and vice versa.
3.2.1 Types of Group Actions

Now we will introduce some specific classes of group actions we make use of later.

Definition 3.2.2 (Free group actions). A group action p on M is free if for all p € M,

g€ G\{I}, pg(p) # p.

Definition 3.2.3 (Transitive group actions). A group action p on M is transitive if for any

points p1, pa € M there exists g € G such that pg(p1) = p.

One important property a group action is whether or not it leaves some points fixed. If

it does, we often care about those specific points.
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Definition 3.2.4 (Fixed points). Given a G-manifold M, p € M is a fixed point of M if

for all g € G, ugp = p. The set of fixed points is denoted MEC.

3.2.2 Fundamental Vector Fields

Fundamental vector fields characterize the infinitesimal behaviour of our group action at
points. For our purposes, though, they will be primarily used in order to “include” the Lie

algebra g into the space of vector fields on M.

Definition 3.2.5 (The fundamental vector field). Let the map u(p) : G — M be defined

as 1(p)(g) = pg(p). The fundamental vector field X# associated to X € g = TG is defined

as

(X%)p = (u(p))+(X).

Due to fundamental vector fields, we can speak of interior multiplication by an element
of X € g, in that 1x = ty%.

Furthermore, we have that the map # : X — X# is G-equivariant.

Theorem 3.2.6. Let ge G, X € g, and M be a smooth G-manifold. Then,
(AdgX)" = pu(g)- X7
Proof. Let’s start with the right-hand side:

(1(9)«X*)p = u(g)s o p(g™  p)uX.

1

1(g) o (g~ p) sends h to (ghg™)-p = ¢g(h)-p = p(p) o cg(h), so u(g) o (g™t p) = pu(p)ocy

Now, recalling that Ad, = (cg)«, and using the chain rule for pushforwards, we see that

((1(9))« X ) = (1(p) © cg) X = pu(p)«((cg) X) = u(p)xAdg(X) = (AdgX)7.
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3.2.3 Quotient Manifolds

When we have a smooth G-manifold M, we can consider the quotient space M /G consisting
of the set of G-orbits of points. This is a topological space, but in some cases we can impose

more structure.

Theorem 3.2.7. Let G be a compact manifold acting smoothly and freely on a smooth man-
ifold M. Then M /G is also a smooth manifold with dimension dim M —dim G. Furthermore,

the canonical projection m: M — M /G is a smooth submersion.
Proof. cf. [Leel2, Thm. 21.10]. O

This theorem starts to help us build intuition as to what we want out of our new form
of cohomology. When G acts freely on M, it would be nice for our cohomology to simply
take the form of H*(M/G). However, we cannot just have it be H*(M/G) in all cases.
Two reasons are illustrative of the inadequacy of such a model. First, in the general case,
M /G is not always well-behaved enough to work with. M /G is only guaranteed to be a
manifold for free actions. Second, even if M /G is a manifold for a non-free action, it may
have trivial cohomology useless for us. Tu gives us the example of a sphere being rotated
around an axis. That quotient manifold is a closed interval, which has trivial cohomology,

thus stripping out any information we would find interesting.

3.3 The Cartan Model

Now we will introduce the model for equivariant cohomology we will use for the rest of this
paper, the Cartan model. It is worth noting that there are other models for equivariant
cohomology, and that all of the models only correspond in the case when G is a compact,

connected Lie group.
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Definition 3.3.1 (Symmetric powers). The k-th symmetric power of a vector space V,

denoted S*(V), is defined as the quotient of X]f V by the subspace spanned by the union

of the following 3 sets:

Sl = {(’Ul,’UQ, ; Vg, y Uiy '71)]4:)’7)17" y Uk € ‘/71 < 7’5] < k}
So = {(v1,v2, ..., aUmy ..., Uk) — a(V1,V2, ...y Uy ooy V) |01, - o € V1 <m < K}
Sz = {((v1,v2y .-+, Vm + Winy o« o, V) — (V1,025 « oy Uy« -, Vk)
—(0,..., Wy -, 0|1, -+ Vg, W €V, 1 <m < Kk}

Definition 3.3.2 (The symmetric algebra). Given a vector space V, the symmetric algebra

over V, S(V) is defined as
e 0]
D 5(V)
k=0

with a product v : S¥(V) x 8™(V) — S¥+V(V) defined by

[(w1y. . ug)] v [(wi, .. wm)] = [(u1, ..., ug, wi, ..., wy)].
As such, for vy # vy # -+ # Uy, we denote [(vi, v, ,Uy)] by v1 VU V-V Uy, or simply
V102 - - - Up,. If some vectors are equal, we can consolidate them like so: v} vh? - - vh | where

Pk is the number of times vy is multiplied.

Theorem 3.3.3. Given any basis {v;}] for a vector space V, S(V) = Rlvi,...,v,], with

S(V')’s product corresponding to polynomial multiplication, and vice versa.

Definition 3.3.4 (Polynomial maps on a vector space). Given a vector space V with dual

basis wl,w?, ... ,w" and an element f = > ;ar(wh) - (w")" (summing over all multi-

indices) of R[V*] = R[w!,...,w"], a polynomial map on V p[f] : V — R is the map defined
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pLF1w) = Y ar(w! ()" - (W" ()™
I

Note that a polynomial map on g p[a] is in one-to-one correspondence with an element

of S(g*), and that it (and thus « as well) is endowed with a g-action in the following way:
g - pla](X) = pla](Adg-1(X)).

Now, consider the space S(g*)®Q(M ), which consists of polynomial maps 8 : g — Q(M).

Q(M) has a natural G-action of g - w = u;‘,lw, the pullback of the inverse G-action on M
(we need it to be uZ_l because /‘Ekgh)—l = MZ—lg—l = “Z—lﬂz—l' Alternatively, this follows

from stipulating that for w e QY(M), ve T(M), (g-w)(g-v) = w(v) and extending to the

whole exterior algebra). Thus, we can speak of S(g*) ® (M) as a G-space with action
g (@®@w)=(9-)®(g-w),
or equivalently, for any X € g,
(g-B)(X) =g B(Ady-1(X)) = pg18(Adg-1(X)).

The space of all invariant forms ~, which satisfy g - v = ~ for all g € G, is denoted
(S(g")@QM)), or Qg (M). Elements of Qg (M) can be viewed as G-equivariant polynomial
maps p: g — Q(M), i.e. polynomial maps such that p(g- X) = g - p(X), as we know that

for an invariant form 3, g - 8(Ad,-1(X)) = B(X) for all g € G, so

B(Adg(X)) = g - B(Adg-1(Ady(X))) = g - B(X).
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Now, let’s consider the Cartan differential D :
(Da)(X) = d(a(X)) — wx (a(X)).

There are two things to note about this: D? # 0, but when we restrict to the invariant
forms, Qg (M), it does square to 0 (we will prove this momentarily). To see that we even

can restrict D to Q¢ (M), note that
Da(Ady(X)) = d(a(Ady(X))) — tag, (x) (@(Ady (X))
= d(p 10 (X)) — taqy () (110 (X))
= 1 (d(a(X)) — xa(X))

= 11 ((Da)(X)

where to get from the second to the third line we used Thm. (), (), and that
ux (ffw) = f*(Lpexw).
Second, note that D is not compatible with the graded structure of (M), in the sense

that if a : g — QF(M), Da doesn’t send g to QF+1(M), so the space of invariant forms

must have a more nontrivial grading, which happens to be the following:

b= @ (s"@)eeen)

2a+b=k

We will demonstrate that this grading is compatible with D momentarily as well.

To show this is a proper cochain complex, we start to examine this with a definite
basis of g, {X;}¥_; and corresponding dual basis {u’}¥_; such that u’(X;) = d%. Note that
X =Y, u(X)X;. Thus, tx = LY wi(X)X; = 2 u*(X)ey,, which shows us how X — txa(X)

has the same degree as X — d(«(X)); while the degree as a differential form decrements,
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the degree as a polynomial goes up by one, meaning the total degree as an equivariant form
increments for both terms. With this in mind, we can finally show that Q¢(M) is a cochain

complex.

Theorem 3.3.5.
(Q¢(M), D)

forms a cochain complex.

Proof. We have already shown above how D sends Q£ (M) to Q’é“ (M). To finish this proof

we need to show that D? = 0 on Qg (M). To do this, let’s expand it out:
(D*a)(X) = D(Da)(X)
= d((Da) (X)) — ex((Da)(X))
= d(d(a(X)) — tx(a(X))) — ex(d(a(X)) — ex (tx(a(X))))
= —(d(ex(a(X))) + ex(d(a(X))))
= —Lysa(X) =0

Where to get from the third to fourth lines we used that 2 = d? = 0, and to get from the

fourth to the fifth, we used Cartan’s formula for the Lie derivative. To get that the Lie

derivative of a(X) along X% was 0, we used that

(Lxra(X)) = o] pta(X)

d
- &)tzoa(AdeftXX).
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By Cor. (), we know that
Ad,-x (X) = X,

which is t-invariant, meaning that £y#a(X) = 0, which in turn implies D? = 0.

O]

It is also apparent that if o and 8 are equivariant forms, the form a A § defined by

(a A B)(X) = a(X) A B(X) is also equivariant, as
(a A B)(AdyX) = a(AdyX) A B(Ad,X)
= (u20(X) A (52 B(X))
— it ((X) A B(X))

= (pg-1(a A B))(X).

If o =Y, ulwr and B = Y ;ulwy, then a A B = ZLJUIUJLL)[ A wy, where I and J are
multiindices, and {u'}; is a basis of g*.

Now, as we have created a cochain complex, we can create a cohomology in the standard
way: Let ZE = {a € Q& (M) : Da = 0} and BE(M) = {3€ Q&(M) : B = Dy,v e QZH(M)}
be the spaces of equivariant cocycles and coboundaries respectively. Note that 5 € Zg(M )
doesn’t mean B(X) € Z¥(M), or even B(X) € Z*(M), nor does 8 € BE(M) mean that
B(X) e B*(M). In fact, this is false quite often. Irregardless, one can define the k" Cartan
equivariant cohomology group as HE (M) := ZE(M)/BE(M).

Note that Hg, (M) becomes a ring under the multiplication [a] A [5] = [a A 5], which is
well-defined because if a € Zél (M) and 8 = Dy e BgQ(M), an(Dy)=(-D)"D(a A ~y)+

(—1)*(Da) Ay = D((—1)"a A v) e BE*2(M).
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3.3.1 Circle and Torus Actions

Now let us consider the prime examples of the Cartan model we will see in the next section:
circle and torus actions.
Notice, that as both those are Abelian, that we can simplify Qg (M) considerably, as

Ad : G — {idg}, so for any a € Qg (M)

(g ) (X) = pgra(Ady—1 (X)) = pgra(X),

so for a to be invariant, it need merely be in S(g*) ® Q(M)%, or, given dual basis {u’}¥_|,
Q(M)C[ut,u?,...,u*], i.e. an element of the space of G-invariant-form-valued polynomial
maps on g. For a circle S', there is only one element of the dual basis as the Lie algebra is
isomorphic to R, so we have Q5" (M)[u]. Note that if we have a basis {X;} with dual basis
{u'}, then we can write D = 1®d — Y, u’ ® vx;, often shortened to D = d — Y, u’tx,. For

T = S', this simplifies even further to fixing X € s' and dual element u, with D = d — ucx.

3.3.2 Equivariant Cohomology at a Point

The equivariant cohomology for a 0-dimensional manifold {p} is quite simple, because
Q'(p}) = R and QF({p}) = {} for k > 0. Thus, Qg({p}) = S(g*)%, and as D = 0, every
form is equivariantly closed and none are equivariantly exact, meaning H%({p}) = S(g*)“

as well.

3.3.3 Equivariant Cohomology of a Free Group Action

Now, we know that if G is a compact, connected Lie group acting freely on M then M /G
is a smooth manifold as well. We would like to see if our definition of H2 (M) corresponds

with H*(M/G), as would seem to be prudent.

Theorem 3.3.6. Let M have a free G-action, where G is a compact, connected Lie group.
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Then

Hir (M/G) = H*(Qa(M), D).

Proof. Note that m : M — M /G is a principal bundle (Def. ()), so ™ : Q(M/G) —
Q(M) is injective [Tull, Prob. 18.8]. Additionally, note that elements of 7*Q(M/G) are
necessarily G-invariant. We will now construct an isomorphism between H* (¢ (M), D) and
H*(Q(M/G),d). First, consider the map i : Q(M/G) — Qg(M) defined by i(w) = 1Q(7*w).

We have that
(Di(w))(X) = (DA @7 w))(X)
=dr*w + txm*w
= dr*w + 7 (1, x#W)
= m*dw

Di(w) =1®r*dw = i(dw),

where we used that m, X7 = 0, as G acts trivially on M /G.

Thus, as i is compatible with addition and scalar multiplication as well, it is a cochain
homomorphism. Now, we need to show that it is also cohomological isomorphism, that is,
that every cohomology class in H*(Q¢(M), D) corresponds to one in H*(M/G) and vice
versa.

Let us consider the quotient complex Q¢ (M)/i(2(M/Q)), i.e., the complex where
(Qc(M)/i(QM/G)))* := (U (M) /i (M/G))).

We have that D(i(Q*(M/G)) < i(Q¥ (M /QG)), as D(i(m*w)) = i(r*(dw)), so D respects
this grading on Qg (M)/i(B), and as D? = 0, it forms a proper cochain complex. We then
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have the short exact sequence of cochain complexes

0 —— (QM/G),d) —— (Qa(M), D) — (786405, D) — 0.

This then induces a long exact sequence on the cohomology by the zig-zag lemma [Tull,

Thm. 25.6]

*

. —— H*B,d) - H*Qg(M), D) —2— HF (i(&%%)yp) N

Thus, to show that i* is an isomorphism, we need to show that the cohomology of

Qa(M)/i(QUM/G))) is 0, as then by definition,
H*(Q¢(M), D) = kerp* = i*(H*(Q(M/G),d)),

which combined with the injectivity of i, produces an isomorphism on the cohomology.

To do this, first note that as 7 : M — M /G is a principal bundle, we can construct a
connection © (Def. ( )) Further, we can construct a derivation K : S(g*)®Q (M) such
that for all a € g*, K(a) = —a0© e Q1(M), and K(1® Q(M)) = 0.

Then, if 8 = u!B; € (S*(g*) ® Q(M))Y, we have that

K(8) = Y K (u)yu" 5,

iel

==Y uMH(© A Br) € (S5 (g¥) @ (M),

el
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where we are treating I as a multiset and subtracting {i}. The above holds, as
,u;’;q o' = M;fl (UZ 00) = u'o (Nj}l 0)

=u' 0 (Ad,-10) = (u' 0 Ady-1) 0 O,

SO

g-K@B) =~ (uf\{i} o Adgfl) (((u' 0 Ady—1) 0 ©7) A Br)

iel

Furthermore, if w € QF (M), K(w) € Qg’_l(M), as u' gets sent to a 1-form, decreasing
degree by 1, and a pure differential form gets sent to 0, which also can be viewed as having
one less degree, as 0 has every degree.

Now, note that if a € g*,
(DK + KD)a)(X) = (DK«)(X)

= (=D(a 0 0))(X)

=—d(ao®)+ix(oO)

=a(X)—d(ao0),
as ty(ao0) =ao(1x0) = a(X) by definition. Thus, (DK + K D)a = (polydega)a + [0],
where polydega refers to a’s polynomial degree, and [n] is a term of polynomial degree n
or lower.

Assume that 71, 72 have monomial polynomial components of degrees k1 and ko respec-

tively, and each individually satisfy (DK + KD)vy; = kiy + [k1 — 1] and (DK + KD)vys =
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kaya + [k2 — 1]. Then we have that
(DK + KD)(m1 A 72) = (DK + KD)y1) Av2 + 71 A (DK + KD)y2
= (k1y1 + [k1 = 1]) Av2a + 71 A (kaya + [k2 — 1])

= (kl + kg)’yl A Yo + [kl + ko — 1],

as (DK + K D) is a derivation. As polydeg(y1 A72) = k1 + k2, this degree-lowering property
is held by 1 A 72 as well. Thus, by induction, we have that the degree-lowering property

holds for every equivariant differential form with monomial polynomial component.

This in turn implies that it holds for a non-monomial element of Qg(M ), as if its
polynomial degree was n, then all monomial elements v of degree a less than n satisfy
(KD+DK)y=ay+[a—1]=ny+(n—a)y+[a—1] =ny+[n—1].

Suppose we have an element 3 € QF,(M) with maximum polynomial degree n such that

Dp e i(Q(M/G)). Then, as we showed above,
(DK + KD)B=nB+~y=n8+[n—-1].

Now, as Df € i(2(M/G)), this means that
DKB=npg+7~y

B =DKp —~/n.

Note, that K preserves Qg (M), and that K respects its graded structure, as does D,
so —y/n € Q&(M), D(—vy/n) = DB € i(QUM/G)), and the maximum degree of —v/n,
ny, is less than n. Thus, one can show that DK (—vy/n) = (—v/n) — y2/n1, with —y3/ny
being a k-cocycle of polynomial degree < nj, and so on. Thus, eventually we reach that

B = D(stuff) + 1 ® w, with w € (QF(M))Y such that D(i(w)) € i(Q(M/G)). Note that if
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D(i(w)) = i(a) for some a € Q(M/G), then

dw —1xw = a.

Thus, txw is completely X-invariant, which is only possible if .xw = 0 for all X € g.
Thus, w is both G-invariant and horizontal, meaning it is basic, i.e. that w € 7*Q(M/QG)
[GS99, p. 26]. Thus, any element 3 € Q;(M) is cohomologous to an element of i(Q(M/G)),

so Q¢(M)/i(B) has a trivial cohomology, proving that i gives a quasi-isomorphism.
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Chapter 4: ABBYV Localization

Now, we come to the climax of this thesis: the application of the theory of equivariant coho-
mology to calculating integrals. Once we develop an appropriate definition for integration
of equivariant forms, we will go on to state a fascinating theorem that shows integrals of
equivariantly closed forms can be entirely characterized by integrals of their restrictions to

the fixed-point submanifold, a result evocative of the residue theorem of complex analysis.

4.1 Integrating Equivariant Forms

Naturally, one may begin to wonder if there is a way to integrate equivariant differential
forms analagous to how one may integrate a normal differential form. The answer is a

resounding “yes.”

Definition 4.1.1. Given o € Q¢(M), we define the polynomial function {,, o : g — R by

Notice that for this integral, as {,, a; = 0 unless ay € Q"(M), we only need to care

about terms which have degree-n differential forms multiplied to polynomials. Furthermore,

49



notice that

where we used Thm. () to get to the last line. Thus, {,, o € S(g*)%.

4.1.1 (G-actions on submanifolds and boundaries

Here we note a few things about how group actions interact with submanifolds.

Definition 4.1.2 (G-invariant submanifold). A smooth submanifold S is G-invariant if for

allpe S, pgp e S.

Now, consider a smooth G-manifold M with boundary dM. Then, as p, is a diffeomor-
phism for all g € G, pg(0M) = 0M [Leel2, Prop. 2.18], so 0M is a G-invariant submanifold,

meaning that the group action restricts to it.

4.1.2 Equivariant Stokes’ Theorem

We have an almost identical statement as the standard Stokes’ theorem for equivariant

forms.

Theorem 4.1.3. Let M be an oriented smooth n-dimensional G-manifold. Then, for

a € Qag(M) such that a(X) has compact support for all X € g,

Proof. Using the definition of equivariant integration, we realize that we can just consider

§ Da(X) and §,,, «(X) for arbitrary X € g. This in turn means that §, Da will only be
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nonzero if it has a term in (S(g*) ® Q"1 (M))%, and without loss of generality, we need
only consider elements of that subset. Using the definition of the Cartan differential, we

have that

I
=3
RN
>

as a(X) € Q"L (M), so txa(X) € Q" 2(M) and thus integrates to 0 on M. Then, we can

use the standard Stokes’ theorem to say that

( JM Da> (X) = JM Da(X)

- | )

()

which, as it holds for all X € g, proves the assertion above. O

4.2 ABBYV Localization

Now, we finally get to stating some localization theorems. But first, a few more concepts

must be introduced.

4.2.1 The Normal Bundle

Normal bundles are a key ingredient of the statement of our localization theorems. In-
tuitively (and in the case of Riemannian manifolds, exactly), they capture the directions

orthogonal to a submanifold in the tangent space.
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Definition 4.2.1 (Restriction of the tangent bundle). Let S € M be a subset of a smooth
n-manifold M. Then we define TM|g to be LpesT,M. If S is a smooth submanifold of M,

then T'M|g is a smooth vector bundle [Leel2, Ex. 10.8].

Let N be a submanifold to M. Then there is a natural identification of T'N as a subbundle

of TM|y. The normal bundle is the pointwise complement to that subbundle.

Definition 4.2.2 (Normal bundle). Let S < M be a smooth submanifold of n-manifold

M. Then the normal bundle to S NS is the bundle given by N,S = T,,M /TS for all p € S.

NS is a smooth vector bundle.

4.2.2 Equivariantly Closed Extensions

Recall that an equivariant form « is equivariantly closed if Da = 0. Given some invariant
2n-form wa,, we say that it has an equivariantly closed extension if one can construct an

equivariantly closed form « such that a(0) = wa,. In other words, for all X € g,
(Da)(X) =da(X) —ixa(X) =0
da(X) = txa(X).
Note that any equivariantly closed extension of we, has degree 2n as an equivariant form.
Let [a(X)]r denote the degree-k component of a(X). Then,

d[a(X)]2n + d[a(X)]2n—2 + - - + d[a(X)]o = tx[a(X)]2n + - - - + ex[a(X)]2.

For a form to be 0 each degree must be 0, so we have that

d[a(X)]ogn—r) = tx[(X)]a(n—r12)

for kK = 0,1,...,k. This clearly means that wo, must be closed in order for it to admit an

equivariantly closed extension.
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Unfortunately, while there has been some investigation into which closed G-invariant
forms admit an equivariantly closed extension [Wu93], there does not exist, or at least has
not yet been found, a set of comprehensive necessary and/or sufficient conditions that is,
in my opinion, truly elegant.

G-manifolds for which every closed form admits an equivariantly closed extension are

called equivariantly formal.

4.2.3 The Equivariant Euler Class

The equivariant Euler class is the final ingredient we have to unpack in order to make
sense of our localization theorems. It is an equivariant generalization of the Fuler class, a

characteristic class which intuitively captures the nontriviality of a vector bundle.

Definition 4.2.3 (Equivariant vector bundle). A vector bundle 7 : E — M with fiber
V is G-equivariant if , and M have G-actions p and v such that p(E,) < E,,, and
tglE, : By — E,,p is a linear map. In other words, if 7 : £ — M is an equivariant vector

bundle, 7 is G-equivariant, and p restricts to linear maps on individual fibers.

Note that if S is a G-invariant submanifold, then NS is an equivariant vector bundle,

as one can restrict py to S and consider the pushforward, thereby getting a map for p € S
(1g)s : TyM/TpS — Tyuyp M [Ty
We now introduce a number of concepts from the theory of principal bundles we will

make use of in our definition of the equivariant Euler class.

Definition 4.2.4 (Principal bundle). Given a Lie group G, a principal G-bundle 7 : P — M

is a smooth fiber bundle equipped with a smooth free right G-action R, that restricts to a
transitive action on the fibers, i.e., for all p e M and g € G, R, sends elements of 7~ 1({p})

to 71 ({p}), and R|—1(gpy) : g = Rglr—1((p} is transitive for all p e M.

Note that this definition implies that 7=1({p}) is diffeomorphic to G for all p € M, i.e.,
P has fiber G. Thus, we can think of 771({p}) as G, just without a chosen identity.
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Definition 4.2.5 (Connection on a principal bundle). Let 7 : P — M be a principal
G-bundle. Then, a connection on P is a g-valued one-form © € g ® Q(P) satisfying the

following properties: R7O = Ad 10, and for all X € g, ty»0 = X.

Note that for a right-action, the fundamental vector field is defined in much the same

way as for a left-action, with (X#), = R(p)«X, where R(p) : G — M is defined by

Definition 4.2.6 (Curvature of a connection). Given a principal G-bundle 7 : P — M and

a connection O, the curvature of the connection, Q € g ® Q?(P) is defined as
1
Q:=doe + 5[@,@],

where given a, 8 € g ® QY(P), [, B] is the g-valued 2-form defined by

[OZ,B](X, Y) = [Oé(X),ﬂ(Y)] - [Oé(Y),ﬂ(X)]

for any vector fields X, Y.

Note that this definition just simplifies to stating that
QX,Y)=do(X,Y) + [6(X),0(Y)].

A connection is called flat if has 0 curvature.
Theorem 4.2.7. A trivial principal G-bundle admits a flat connection.

Proof. Recall a trivial bundle P is isomorphic to M x G, with 7 : M x G — M. Thus,
TP ~TM®TM. Let § € g® Q!(G) be the Maurer-Cartan form, that is, the uniqe g-
valued one form such that 0,((¢y)«X) = X. Let m3 : M x G — G be the projection onto

G. Then, consider © = w36. This is a connection on P. Now, consider the curvature €2.
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Clearly, if X € TM Q(X,Y) = 0 for all Y € TP. But, we also know that if X,Y € TG
then Q(X,Y) = 0 [Tu20, Thm. 17.4]. Thus, we have that Q is identically 0, so © is a flat

connection on P. O]

Theorem 4.2.8. If G is a compact, connected Lie group acting smoothly and equivariantly
on a vector bundle w : E — M, then we can endow E with a G-invariant bundle metric,

i.e. a bundle metric such that for all XY € E,, (X, Y ), ={9-X,9-Y)gp.
The specific principal bundle we will use is the following.

Definition 4.2.9 (The frame bundle). Given a real oriented rank-r vector bundle E over

M with bundle metric (-, -), the frame bundle is defined as

F(E):= | | F(EB),

peM

where F(E,) is the space of oriented orthonormal bases of T, M.

F(FE) is a principal SO(r)-bundle. Note that if £ is a G-equivariant vector bundle
with left G-action, then F(E) also has a left G-action which commutes with its right
SO(r)-action. Thus we can endow F(E) with a G-invariant connection by taking any
arbitrary connection 6 on F(E) and letting © = {,(u%6)dg, where we are integrating over

the normalized Haar measure on G. It is straightforward to show this is G-invariant and a

connection.

Definition 4.2.10 (The Pfaffian). Given a 2n-dimensional inner product space V, the

Pfaffian is a SO(V)-invariant polynomial map defined on so(V') so that for A = (4;;) €

s0(V), if €’ is a dual basis for V, and

W= ZAijeZ N

i<j
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AN

= Pfaff(A)e! n e A - A e®"
n!

0 a
Explicitly, for a 2 x 2 skew-symmetric matrix A = € s0(2), Pfaff(4) = a.

—a 0
Additonally, it is interesting to note that Pfaff(A)% = det A.

Finally, we are able to define the equivariant Euler class.

Definition 4.2.11 (Equivariant Euler class). Given a G-equivariant real rank-2k oriented
vector bundle E, and a G-invariant connection © on F(F) with respective curvature €2, the

equivariant Euler class of E is an element of HZF(M) defined by

e“(E) = [(Qi)kaaﬂ-‘ (Q+ L)] ,

where L : g — Q°(M) is the map defined by L(X) = 1x©.

Note that this definition has an opposite sign on the second argument inside the Pfaffian
than [BTO01], as that paper uses opposite sign conventions for the fundamental vector field
of left-acting G-manifolds than we do. We will now state some facts about the equivariant
Euler class. Actually proving them is outside the scope of this thesis, but one can do it if
one uses an alternative definition of the equivariant Euler class based on the Borel model

of equivariant cohomology, wich [BT01] showed to be equivalent.

Theorem 4.2.12. The equivariant FEuler class does not depend on choice of connection ©,

nor on G-invariant bundle metric.
Theorem 4.2.13. The equivariant Fuler class has the following properties

(a) If 7 : E — M and w2 : F' — M are real, oriented, G-equivariant vector
bundles, then ¢“(E ® F) = ¢%(E) A EY(F).
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(b) If E and E are the same vector bundle with opposite orientations, then

e“(E) = —eC(E).

It is worth noting that ¢“(E) also gives an equivariantly closed extension of the standard
Euler class.

We now calculate the equivariant Euler class for a specific case we will make use of later.
Theorem 4.2.14. Suppose 7 : L™ — {p} is a trivial rank-2 real S'-equivariant oriented

cosmt —sinmt
vector bundle, with pox = T in some properly-oriented basis. Then

sinmt cosmt

eS (L) = —2% where u is dual to i, in that if X satisfies exp(X) = €', u(X) = 1.

Proof. Notice that 7 : L™ — {p} is a trivial vector bundle. Furthermore, notice that the
standard inner product on R? is S'-invariant if we are in the basis specified in the theorem
statement. As the equivariant Euler class does not depend on choice of S'-invariant inner
product, let us choose that inner product. Thus, we can construct an orthonormal frame
bundle F(L™). This is a S'-equivariant SO(L™) =~ SO(2) principal bundle, with a left
Sl-action corresponding to

(Uh 112) - (Mth /Lgvz)

and a right SO(2) action corresponding to the matrix multiplication of (viva) — (vi va)A.
Note that (vi v2) € SO(2), and the matrix corresponding to the linear map p, is in SO(2)
as well by the S'-invariance of the inner product. As such, by the commutativity of SO(2),
we can view p.i: as acting by right-multiplication by elements of SO(2) as well.

Now let © be a flat S'-invariant connection on F(L™) (note that one must exist, as
SO(2) is abelian, and thus every connection is SO(2) invariant, and as described above, we
can view the S! action as taking place within the SO(2) action). Then, we have that for

X e s! and corresponding dual element u € (s')* as described in the theorem statement,

S (Lm) = 5=Pfaff (2 + uLx). As © is flat, © = 0, so we need only consider L. Notice
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that as Lx = tx©, Lx € 50(2). Now, we need to characterise X# for X € s'. Note that X7

acts on fe CP(F(L™)) as
# _d A
(XF (V1 v2)) = | f (e (vi v2)

d cosmt —sinmt
= ! (1 v2)
sinmt cosmt

cosmt —sinmt

d
= 2| 7| v
sinmt cosmt

d 0 —mt
= —t‘ f | (vi va)exp
0 mt 0
#
0 —m
= [ 1((ve v2)).
m 0
0 —m
Thus, we see that Ly = 1x0 = ,as for Y € s0(2), ©(Y#) = Y by the definition
m 0
of a connection. Thus, we have
1 —-m
eSl(Lm) = 2—Pfaff u = —Z—m
T m 0 m
by definition of the Pfaffian of a 2 x 2 skew-symmetric matrix. O

4.2.4 ABBYV Localization
Finally, we are able to state the localization theorem in concrete terms.

Theorem 4.2.15 (Atiyah-Bott [AB84] and Berline-Vergne [BV82]). Let T be a torus, and
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M be a compact smooth T-manifold, with fized-point manifold M™ = U;F; with connected
components {F;}r. For each F; let vp, © F; < M be its inclusion map. Let ¢ be an

equivariantly closed form. Then,

JM ¢= ; JF e;&}%),

where NF; is the normal bundle of f, and €T (-) is the T-equivariant Euler class.

Note that for all t € T', y;|rp = idy, so for all F;, Qr(F;) = Q(f) ® S(t*). Also note that
if M7 consists of isolated points, NF; = {Tp, M — F;} is a trivial bundle, Qr(F;) = S(t*),

and the integral disappears, leaving just

f ;eT TM|F

One may ask how exactly you divide by an equivalence class of equivariant differential
forms, as is implied by dividing by the equivariant Euler class. The answer is that as
HZ(F;) = S(t*) @ H*(F;), it is a S(t*)-module, so we can perform an algebraic operation
called localization.

Localization is the algebraic process by which, given some f € S(g*), one constructs a
Rlui,ug, ..., up][f~1]-module Ny out of a R[uy,us,...,u,]-module N (we are switching to
lower-indexing of us for convenience). In this case, we choose f in the following way: each

equivariant Euler class can be written as

" (NF)) = aopsi + Zaéf}m% +eet Z @({inl""’]k}ujl"'ujk
{71} {J1s2k}
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The last sum, as an element of H*(M) ® S(g*)” =~ R® S(g*)“, is just a polynomial. Let
P; be the last, purely polynomial, term of e’ (N F;). If P; # 0 for all i, which is the case for

the equivariant Euler class of a connected component of M7, which Fj; is by definition we

Hj#:ipj
11 P,

can localise over Hl P;. Note that P; is invertible in this localization, with Pi_1 = _
53

, m. .8.1|. Furthermore, we can invert e i), letting e i) have a ring-
GS99, Thm. 10.8.1]. Furth i T(NF;), letting eI (NF;) h i

structure induced by the wedge product. To do this, we note that as

{jlvav"'vjkfl} . .
T 2k (Z{j17j2 ----- i1} X2 Uy = u]kﬂ)
e (NF)=P |1+ —=—=+.--+
( 2) ’ PZ P,J !
if we let
Z a{j17j2’.”7jk71}U' e Us
B; Q2 {j1.d2,-dk—1} 25 J1 Jl—1
(A PL PZ s

then e’ (NF;) = P;(1 — B;). Now, we can invert this with the aid of power series, noting

that
1 1 1 1

eT(NEF;) Pil_ﬁi:E(1+ﬁi+,8i/\BZ-JF...JF@MJF”_).

However, as Q?*(F;) = 0 for n > dim M > dim F}, this series will terminate at (dim F;)'",

and thus also n™ order. It is simple to verify then that

where 1 is the cohomology class of the constant map p — 1, the multiplicative identity in
the cohomology ring.

An element of H}.(F;) like ¢, ¢ has a natural inclusion into H%(F,)Hl p, just by dividing
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it through by ([, 75)° = 1. Thus, one of the assertions of the localization theorem above is
that the fractional parts of each of these terms cancel out in some way, leaving us with just

an element of S(t*).

The Localization Formula for an S'-Action with Isolated Fixed Points

In the case of T' = S, if there are isolated fixed points, we can do quite a bit more. Notice
that for any p € MSl, Np =T,M.

Furthermore, we have the following fact.

Theorem 4.2.16. Suppose p is an isolated fired point under an S'-action. Then, under

(teio ), TpM = L™ @ L™ @---@L"™/2, where L™* is a 2-dimensional subspace acted upon

cosmif —sinmg6
by (g)s like so:
sinmgf  cosmyb

We call the ms the exponents of the fixed point.

Corollary 4.2.16.1. If M is a connected S*-manifold with isolated fized points, then M is

even-dimensional.

Thus let us let M be 2k-dimensional from now on. Then, the equivariant Euler class at

an isolated fixed point {p} becomes 5 (L™ ) A --- A €5 (L™*), which is equal to

Thus, our localization theorem becomes

Theorem 4.2.17. Let M be a 2n-dimensional compact S*-manifold, with isolated fized

points p € F. Then, for an equivariantly closed S*-form ¢, if tp : {p} — M (s the inclusion
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map for p,

where {my(p)} are the exponents of p, and w is as defined in Thm. )

The Duistermaat-Heckman Theorem

One of the chief applications of this theorem is in the case where M is a 2n-dimensional
symplectic manifold, i.e., that M is equipped with a 2-form w which is non-degenerate, i.e.
for all p e M, given any X € T,M, if w(X,Y) =0 for all Y € T,M, then X = 0. eI (NF}) is
invertible in the localization of the equivariant cohomology in the way described above, so
we can localize integrals.

We can consider p : T — AutT,M =~ GL(T,M) as a representation of T" at the fixed
points, and as every finite-dimensional representation of a compact group is completely
reducible, we know it must decompose into a direct sum of irreducible representations. Fur-
thermore, by Schur’s Lemma, we know the only irreducible representations have
complex-dimension 1. Consider a one-complex-dimensional representation (p, V') of T. Con-
sider H,G € t. efle® = eH+C by commutativity of T and thus p(eT¢) = p(ef)p(e”). Note
that |p(e©)| = 1 as we can endow V with an inner product such that {p(e%)v, p(e%)w) =
p(e9)*p(e%) v, wy = (v,w) for all v,w € V. In other words, p(e%)*p(e%) = [p(e%)|? = 1,
so |p(e®)| = 1. Thus, p(e©) = e/ (P(G) where f : T — R satisfies f(exp(H + G)) =
f(exp(H)) + f(exp(G)). This defines a map « : t - R by precomposition with the expo-
nential map. « is clearly linear, so a € t*. As t — (u¢)« decomposes into n such irreducible

representations, at each fixed point p we have n such weights {a; ,}7" ;.

Corollary 4.2.17.1 (Duistermaat-Heckman [DH82]). Let (M,w) be a compact symplectic

2n-dimensional T-manifold with equivariant symplectic 2-form © = w + ¢. Furthermore,

suppose MT consists of isolated fixed points. Then,
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n (6 (X)

(fM ea}) (X) - JM eqj(X)% - (27T>n .;:Z m,

where o, € t* are the weights of fus.

There are a few things to note: While e* is not an equivariant differential form, each
term in the power series expansion is, so we can still prove it with localization. Second,
¢ e QM) ® SH(t*) = O (M) ® t* is just a T-invariant map smooth map M — t*. We
call it the moment map. Finally, in the case that 7" = S, this can be rephrased in the

following way: if if is the moment map of w, with f € C°(M), (using that s' =~ iR), then

J eitf w” — (277>n Z cimsenH(p)/4 itf(p) M 7
M n! t st det Hy(p)

where Hy(p) is the hessian, and sgnHy(p) is the difference in the number of positive and

we have that

negative eigenvalues of H¢(p), called its signature. In other words, the first-order stationary
phase approximation is exact.

It is also worth noting, as a historical aside, that the Duistermaat-Heckman formula was
not first introduced in the context of equivariant cohomology, but was rather an impetus
for Atiyah and Bott to produce their localization formula in the first place (I am unsure
as to what role it played in Berline and Vergne’s, as I cannot read French). It is thus a
testament to their success that the Duistermaat-Heckman formula follows so readily from

theirs.
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